Advances in the regulation of low density lipoprotein receptor by RING-E3 ubiquitin ligase
Author:
Affiliation:

Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R5;Q5

  • Article
  • | |
  • Metrics
  • |
  • Reference [55]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The occurrence and development of atherosclerotic cardiovascular diseases is closely related to abnormally elevated plasma low density lipoprotein cholesterol (LDLC) level. Low density lipoprotein receptor (LDLR) plays a central role in the maintenance of cholesterol homeostasis by mediating the endocytotic clearance of LDLC, and the abundance of LDLR on the surface of the cell membrane is closely related to the expression level and recirculation of LDLR. Recent studies have found that RING-E3 ubiquitin ligase can regulate LDLR levels through a dual mechanism:on the one hand, it directly ubiquitinates and modifies LDLR to promote its degradation via the endosome-lysosome pathway; on the other hand, it reduces LDLR synthesis through activation of the liver X receptor (LXR) pathway or inhibition of the nuclear translocation of sterol regulatory element-binding protein (SREBP). Together, these two mechanisms lead to a decrease in cell membrane LDLR abundance, impairing cholesterol metabolic homeostasis and exacerbating LDLC accumulation. Therefore, targeted inhibition of RING-E3 ubiquitin ligase activity may be a novel strategy to regulate LDLR expression, reduce plasma LDLC levels, and combat cardiovascular disease. This article reviews the mechanism of action of RING-E3 ubiquitin ligase in regulating LDLR and its related research progress.

    Reference
    [1] GUO S, WANG C, HU T, et al.Association of LDL-C with stroke and all-cause mortality in hypertensive patients with high risk of ASCVD.Clin Hypertens, 5,1:e7.
    [2] BAIGENT C, KEECH A, KEARNEY P M, et al.Efficacy and safety of cholesterol-lowering treatment:prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins.Lancet, 5,6(9493):1267-1278.
    [3] MINEO C.Lipoprotein receptor signalling in atherosclerosis.Cardiovasc Res, 0,6(7):1254-1274.
    [4] WARD N C, WATTS G F, ECKEL R H.Statin toxicity.Circ Res, 9,4(2):328-350.
    [5] Cholesterol Treatment Trialists' Collaboration.Efficacy and safety of statin therapy in older people:a meta-analysis of individual participant data from 28 randomised controlled trials.Lancet, 9,3(10170):407-415.
    [6] 杨帆, 刘楚轩, 彭飞, 等.PCSK9抑制剂在治疗动脉粥样硬化中的研究进展.中国动脉硬化杂志, 3,1(3):185-189.YANG F, LIU C X, PENG F, et al.Research progress of PCSK9 inhibitors in the treatment of atherosclerosis.Chin J Arterioscler, 3,1(3):185-189.
    [7] LAMB Y N.Rosuvastatin/ezetimibe:a review in hypercholesterolemia.Am J Cardiovasc Drugs, 0,0(4):381-392.
    [8] FERRI N, RUSCICA M, FAZIO S, et al.Low-density lipoprotein cholesterol-lowering drugs:a narrative review.J Clin Med, 4,3(4):943.
    [9] ZOU Y, ZHANG Y, LI M, et al.Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases.Int J Biol Macromol, 4,5(Pt 2):130961.
    [10] DESHAIES R J, JOAZEIRO C A.RING domain E3 ubiquitin ligases.Annu Rev Biochem, 9,8:399-434.
    [11] CAI C, TANG Y D, ZHAI J, et al.The RING finger protein family in health and disease.Signal Transduct Target Ther, 2,7(1):300.
    [12] ALDWORTH H, HOOPER N M.Post-translational regulation of the low-density lipoprotein receptor provides new targets for cholesterol regulation.Biochem Soc Trans, 4,2(1):431-440.
    [13] CLIFFORD B L, JARRETT K E, CHENG J, et al.RNF130 regulates LDLR availability and plasma LDL cholesterol levels.Circ Res, 3,2(7):849-863.
    [14] ROBERT J, PANTELOGLOU G, VON ECKARDSTEIN A.RNF130 adds further complexity to the regulation of LDL receptor activity.Circ Res, 3,2(7):864-866.
    [15] ZHANG J, CHEN W, DU J, et al.RNF130 protects against pulmonary fibrosis through suppressing aerobic glycolysis by mediating c-myc ubiquitination.Int Immunopharmacol, 3,7:109985.
    [16] ZELCER N, HONG C, BOYADJIAN R, et al.LXR regulates cholesterol uptake through IDOL-dependent ubiquitination of the LDL receptor.Science, 9,5(5936):100-104.
    [17] CALKIN A C, GOULT B T, ZHANG L, et al.FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors.Proc Natl Acad Sci U S A, 1,8(50):20107-20112.
    [18] MARTINELLI L, ADAMOPOULOS A, JOHANSSON P, et al.Structural analysis of the LDL receptor-interacting FERM domain in the E3 ubiquitin ligase IDOL reveals an obscured substrate-binding site.J Biol Chem, 0,5(39):13570-13583.
    [19] NELSON J K, SORRENTINO V, AVAGLIANO TREZZA R, et al.The deubiquitylase USP2 regulates the LDLR pathway by counteracting the E3-ubiquitin ligase IDOL.Circ Res, 6,8(3):410-419.
    [20] LIANG C, WANG X, PENG K, et al.IDOL depletion protects against spontaneous atherosclerosis in a hamster model of familial hypercholesterolemia.Oxid Med Cell Longev, 2,2:1889632.
    [21] HONG C, MARSHALL S M, MCDANIEL A L, et al.The LXR-IDOL axis differentially regulates plasma LDL levels in primates and mice.Cell Metab, 4,0(5):910-918.
    [22] GUO B C, KUO K L, HUANG J W, et al.Di-(2-ethylhexyl) phthalate limits the lipid-lowering effects of simvastatin by promoting protein degradation of low-density lipoprotein receptor:role of PPARgamma-PCSK9 and LXRalpha-IDOL signaling pathways.Antioxidants (Basel), 3,2(2):477.
    [23] CHAN M L, SHIU S W, CHEUNG C L, et al.Effects of statins on the inducible degrader of low-density lipoprotein receptor in familial hypercholesterolemia.Endocr Connect, 2,1(6):e220019.
    [24] HUANG Y, LIU F Y, YANG J T, et al.Curcumin nicotinate increases LDL cholesterol uptake in hepatocytes through IDOL/LDL-R pathway regulation.Eur J Pharmacol, 4,6:176352.
    [25] 蒋素素, 曾娅玲, 宁洁, 等.姜黄素下调IDOL水平促进肝细胞摄取血浆LDLC.中国动脉硬化杂志, 1,9(9):751-760.JIANG S S, ZENG Y L, NING J, et al.Curcumin promotes the hepatocytes-uptake of plasma LDLC by down-regulating IDOL level.Chin J Arterioscler, 1,9(9):751-760.
    [26] WAN Z, LAN R, ZHOU Y, et al.Taurine-mediated IDOL contributes to resolution of Streptococcus uberis infection.Infect Immun, 1,9(5):e00788-20.
    [27] CHOI Y J, LEE S J, KIM H I, et al.Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells.Sci Rep, 0,0(1):19834.
    [28] SAITO H, TACHIURA W, NISHIMURA M, et al.Hydroxylation site-specific and production-dependent effects of endogenous oxysterols on cholesterol homeostasis:implications for SREBP-2 and LXR.J Biol Chem, 3,9(1):102733.
    [29] WANG N Q, SUN P X, SHEN Q Q, et al.Cholesterol metabolism in CNS diseases:the potential of SREBP2 and LXR as therapeutic targets.Mol Neurobiol, 5,2(5):6283-6307.
    [30] HORTON J D, GOLDSTEIN J L, BROWN M S.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver.J Clin Invest, 2,9(9):1125-1131.
    [31] YANG T, ESPENSHADE P J, WRIGHT M E, et al.Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER.Cell, 2,0(4):489-500.
    [32] RADHAKRISHNAN A, IKEDA Y, KWON H J, et al.Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:oxysterols block transport by binding to insig.Proc Natl Acad Sci U S A, 7,4(16):6511-6518.
    [33] OHMURA-HOSHINO M, GOTO E, MATSUKI Y, et al.A novel family of membrane-bound E3 ubiquitin ligases.J Biochem, 6,0(2):147-154.
    [34] WU K, ITSKANOV S, LYNCH D L, et al.Substrate recognition mechanism of the endoplasmic reticulum-associated ubiquitin ligase Doa10.Nat Commun, 4,5(1):2182.
    [35] LOREGGER A, COOK E C, NELSON J K, et al.A MARCH6 and IDOL E3 ubiquitin ligase circuit uncouples cholesterol synthesis from lipoprotein uptake in hepatocytes.Mol Cell Biol, 6,6(2):285-294.
    [36] SHARPE L J, HOWE V, SCOTT N A, et al.Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation.J Biol Chem, 9,4(7):2436-2448.
    [37] TAN J M E, VAN DER STOEL M M, VAN DEN BERG M, et al.The MARCH6-SQLE axis controls endothelial cholesterol homeostasis and angiogenic sprouting.Cell Rep, 0,2(5):107944.
    [38] SCHMIDT C C, VASIC V, STEIN A.Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation.Elife, 0,9:e56945.
    [39] SONG B L, SEVER N, DEBOSE-BOYD R A.Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG-CoA reductase.Mol Cell, 5,9(6):829-840.
    [40] COOK E C, NELSON J K, SORRENTINO V, et al.Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene.PLoS One, 7,2(2):e0172721.
    [41] IRISAWA M, INOUE J, OZAWA N, et al.The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage.J Biol Chem, 9,4(42):28995-29004.
    [42] ZHANG L, RAJBHANDARI P, PRIEST C, et al.Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP.Elife, 7,6:e28766.
    [43] MING J, WEI X, HAN M, et al.Genetic variation of RNF145 gene and blood lipid levels in Xinjiang population, China.Sci Rep, 1,1(1):5969.
    [44] JIANG L Y, JIANG W, TIAN N, et al.Ring finger protein 145(RNF145)is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase.J Biol Chem, 8,3(11):4047-4055.
    [45] LEE J P, BRAUWEILER A, RUDOLPH M, et al.The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways.Mol Cancer Res, 0,8(1):93-106.
    [46] JO Y, LEE P C, SGUIGNA P V, et al.Sterol-induced degradation of HMG-CoA reductase depends on interplay of two insigs and two ubiquitin ligases, gp78 and Trc8.Proc Natl Acad Sci U S A, 1,8(51):20503-20508.
    [47] HU M, HAN T, PAN Q, et al.The GR-gp78 pathway is involved in hepatic lipid accumulation induced by overexpression of 11β-HSD1.Int J Biol Sci, 2,8(8):3107-3121.
    [48] XU T, YU W, FANG H, et al.Ubiquitination of NLRP3 by gp78/insig-1 restrains NLRP3 inflammasome activation.Cell Death Differ, 2,9(8):1582-1595.
    [49] 马家树, 郑云哨, 孙丰霞, 等.SREBP/PCSK9通路与抗精神病药物所致脂代谢紊乱相关性的研究进展.中南大学学报(医学版), 3,8(10):1529-1538.MA J S, ZHENG Y S, SUN F X, et al.Research progress in the correlation between SREBP/PCSK9 pathway and lipid metabolism disorders induced by antipsychotics.J Cent South Univ(Med Sci), 3,8(10):1529-1538.
    [50] LI C, WU Y, CHEN K, et al.Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis.Cell Death Dis, 3,4(12):810.
    [51] LEE J N, SONG B, DEBOSE-BOYD R A, et al.Sterol-regulated degradation of insig-1 mediated by the membrane-bound ubiquitin ligase gp78.J Biol Chem, 6,1(51):39308-39315.
    [52] ZHANG Y, LEE K M, KINCH L N, et al.Direct demonstration that loop1 of scap binds to loop7:a crucial event in cholesterol homeostasis.J Biol Chem, 6,1(24):12888-12896.
    [53] KYUSHIKI H, KUGA Y, SUZUKI M, et al.Cloning, expression and mapping of a novel RING-finger gene (RNF5), a human homologue of a putative zinc-finger gene from Caenorhabditis elegans.Cytogenet Cell Genet, 7,9(1/2):114-117.
    [54] YANG L L, XIAO W C, LI H, et al.E3 ubiquitin ligase RNF5 attenuates pathological cardiac hypertrophy through sting.Cell Death Dis, 2,3(10):889.
    [55] KUAN Y C, TAKAHASHI Y, MARUYAMA T, et al.Ring finger protein 5 activates sterol regulatory element-binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP.J Biol Chem, 0,5(12):3918-3928.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Fangyuan, ZHANG Caiping, LONG Shiyin. Advances in the regulation of low density lipoprotein receptor by RING-E3 ubiquitin ligase[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2025,33(5):440-446.

Copy
Share
Article Metrics
  • Abstract:29
  • PDF: 128
  • HTML: 0
  • Cited by: 0
History
  • Received:March 07,2025
  • Revised:April 08,2025
  • Online: June 03,2025
Article QR Code