Association of histone methylation modification with cardiovascular diseases
Author:
Affiliation:

Institute of Pharmaceutical Research, Zhengzhou University, Zhengzhou, Henan 450000, China)

Clc Number:

R96;R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [68]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Histone methylation modification, as one of the post-translational modifications, has been increasingly shown by studies to play a crucial role in the development of cardiovascular diseases (CVD). Due to its reversibility, targeting related modifying enzymes is expected to provide new strategies for the clinical diagnosis and treatment of CVD. This article reviews the relevant methylation modifications and their important regulatory mechanisms in CVD, and discusses the research progress of histone methylation inhibitors in the cardiovascular field.

    Reference
    [1] SAVARESE G, BECHER P M, LUND L H, et al.Global burden of heart failure:a comprehensive and updated review of epidemiology.Cardiovasc Res, 3,8(17):3272-3287.
    [2] ANDERSSON C, VASAN R S.Epidemiology of cardiovascular disease in young individuals.Nat Rev Cardiol, 8,5(4):230-240.
    [3] JOSEPH P, LEONG D, MCKEE M, et al.Reducing the global burden of cardiovascular disease, part 1:the epidemiology and risk factors.Circ Res, 7,1(6):677-694.
    [4] HUANG Z, SONG S, ZHANG X, et al.Metabolic substrates, histone modifications, and heart failure.Biochim Biophys Acta Gene Regul Mech, 3,6(1):194898.
    [5] STEIN A B, GOONEWARDENA S N, JONES T A, et al.The PTIP-associated histone methyltransferase complex prevents stress-induced maladaptive cardiac remodeling.PLoS One, 5,0(5):e0127839.
    [6] HUO J L, JIAO L, AN Q, et al.Myofibroblast deficiency of LSD1 alleviates TAC-induced heart failure.Circ Res, 1,9(3):400-413.
    [7] TANG K, JIAO L M, QI Y R, et al.Discovery of novel pyrazole-based KDM5B inhibitor TK-129 and its protective effects on myocardial remodeling and fibrosis.J Med Chem, 2,5(19):12979-13000.
    [8] MILLN-ZAMBRANO G, BURTON A, BANNISTER A J, et al.Histone post-translational modifications-cause and consequence of genome function.Nat Rev Genet, 2,3(9):563-580.
    [9] BHAUMIK S R, SMITH E, SHILATIFARD A.Covalent modifications of histones during development and disease pathogenesis.Nat Struct Mol Biol, 7,4(11):1008-1016.
    [10] THINNES C C, ENGLAND K S, KAWAMURA A, et al.Targeting histone lysine demethylases—progress, challenges, and the future.Biochim Biophys Acta, 4,9(12):1416-1432.
    [11] GONZLEZ A, SCHELBERT E B, DEZ J, et al.Myocardial interstitial fibrosis in heart failure:biological and translational perspectives.J Am Coll Cardiol, 8,1(15):1696-1706.
    [12] FU X, KHALIL H, KANISICAK O, et al.Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart.J Clin Invest, 8,8(5):2127-2143.
    [13] KASNER M, WESTERMANN D, LOPEZ B, et al.Diastolic tissue doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction.J Am Coll Cardiol, 1,7(8):977-985.
    [14] PAPAIT R, CATTANEO P, KUNDERFRANCO P, et al.Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy.Proc Natl Acad Sci U S A, 3,0(50):20164-20169.
    [15] XIE J, LIN H, ZUO A, et al.The JMJD family of histone demethylase and their intimate links to cardiovascular disease.Cell Signal, 4,6:111046.
    [16] DEOGHARIA M, VENEGAS-ZAMORA L, AGRAWAL A, et al.Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization.Cardiovasc Res, 4,0(6):630-643.
    [17] LI C, ZHANG Y, SHEN J, et al.Cfp1 controls cardiomyocyte maturation by modifying histone H3K4me3 of structural, metabolic, and contractile related genes.Adv Sci (Weinh), 4,1(11):e2305992.
    [18] SHI Y, LAN F, MATSON C, et al.Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell, 4,9(7):941-953.
    [19] ZANG R, TAN Q, ZENG F, et al.JMJD1A represses the development of cardiomyocyte hypertrophy by regulating the expression of catalase.Biomed Res Int, 0,0:5081323.
    [20] ZHANG Q J, CHEN H Z, WANG L, et al.The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice.J Clin Invest, 1,1(6):2447-2456.
    [21] ZHANG Q J, TRAN T A T, WANG M, et al.Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis.Nat Commun, 8,9(1):5230.
    [22] ZHANG S, LU Y, JIANG C.Inhibition of histone demethylase JMJD1C attenuates cardiac hypertrophy and fibrosis induced by angiotensin Ⅱ.J Recept Signal Transduct Res, 0,0(4):339-347.
    [23] ZHAO L, QI F, DU D, et al.Histone demethylase KDM3C regulates the lncRNA GAS5-miR-495-3p-PHF8 axis in cardiac hypertrophy.Ann N Y Acad Sci, 2,6(1):286-299.
    [24] WANG B, TAN Y, ZHANG Y, et al.Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression.Exp Mol Med, 2,4(12):2175-2187.
    [25] KORYAKOV D E.Diversity and functional specialization of H3K9-specific histone methyltransferases.Bioessays, 4,6(2):e2300163.
    [26] PAPAIT R, SERIO S, PAGIATAKIS C, et al.Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy.Circulation, 7,6(13):1233-1246.
    [27] THIENPONT B, ARONSEN J M, ROBINSON E L, et al.The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.J Clin Invest, 7,7(1):335-348.
    [28] YAN F, CHEN Z, CUI W.H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure.BMC Cardiovasc Disord, 2,2(1):182.
    [29] CIBI D M, BI-LIN K W, SHEKERAN S G, et al.Prdm16 deficiency leads to age-dependent cardiac hypertrophy, adverse remodeling, mitochondrial dysfunction, and heart failure.Cell Rep, 0,3(3):108288.
    [30] CHEN K, JIAN D, ZHAO L, et al.Protective effect of histone methyltransferase NSD3 on ISO-induced cardiac hypertrophy.FEBS Lett, 9,3(18):2556-2565.
    [31] LUNARDON G, DE OLIVEIRA SILVA T, LINO C A, et al.Set7 deletion attenuates isoproterenol-induced cardiac fibrosis and delays cardiac dysfunction.Clin Sci (Lond), 2,6(21):1537-1554.
    [32] TAO Y, NEPPL R L, HUANG Z P, et al.The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly.J Cell Biol, 1,4(4):551-565.
    [33] BLUM R, VETHANTHAM V, BOWMAN C, et al.Genome-wide identification of enhancers in skeletal muscle:the role of MyoD1.Genes Dev, 2,6(24):2763-2779.
    [34] HUANG Y S, LI I H, CHUEH S H, et al.Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics.J Tissue Eng Regen Med, 5,9(12):E191-E201.
    [35] XU H, ZHOU Q, YI Q, et al.Islet-1 synergizes with Gcn5 to promote MSC differentiation into cardiomyocytes.Sci Rep, 0,0(1):1817.
    [36] XU H, YI Q, YANG C, et al.Histone modifications interact with DNA methylation at the GATA4 promoter during differentiation of mesenchymal stem cells into cardiomyocyte-like cells.Cell Prolif, 6,9(3):315-329.
    [37] LIN J M, HSU C H, CHEN J C, et al.BCL-6 promotes the methylation of miR-34a by recruiting EZH2 and upregulating CTRP9 to protect ischemic myocardial injury.Biofactors, 1,7(3):386-402.
    [38] ZHAO L, YOU T, LU Y, et al.Elevated EZH2 in ischemic heart disease epigenetically mediates suppression of NaV1.5 expression.J Mol Cell Cardiol, 1,3:95-103.
    [39] RONDEAUX J, GROUSSARD D, RENET S, et al.Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI.Nat Commun, 3,4(1):4461.
    [40] PENG Y, ZHAO J L, PENG Z Y, et al.Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2.Cell Death Dis, 0,1(5):317.
    [41] WANG P, FAN F, LI X, et al.Riboflavin attenuates myocardial injury via LSD1-mediated crosstalk between phospholipid metabolism and histone methylation in mice with experimental myocardial infarction.J Mol Cell Cardiol, 8,5:115-129.
    [42] YAO L, HE F, ZHAO Q, et al.Spatial multiplexed protein profiling of cardiac ischemia-reperfusion injury.Circ Res, 3,3(1):86-103.
    [43] CHEN L, LI S, ZHU J, et al.Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway.J Cell Mol Med, 1,5(6):2944-2955.
    [44] YANG G, ZHANG X, WENG X, et al.SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia-reperfusion injury.Basic Res Cardiol, 7,2(3):22.
    [45] NI L, LIN B, ZHANG Y, et al.Histone modification landscape and the key significance of H3K27me3 in myocardial ischaemia/reperfusion injury.Sci China Life Sci, 3,6(6):1264-1279.
    [46] BAO J, ZHANG C, CHEN J, et al.LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2.Exp Cell Res, 3,7(1):113572.
    [47] SONG H, FENG X, ZHANG M, et al.Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes.Autophagy, 8,4(5):825-844.
    [48] HE L, WANG Y, LUO J.Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury.PeerJ, 2,0:e13823.
    [49] LI Y, QUAN X, LI X, et al.Kdm6A protects against hypoxia-induced cardiomyocyte apoptosis via H3K27me3 demethylation of Ncx gene.J Cardiovasc Transl Res, 9,2(5):488-495.
    [50] WOOLLARD K J, GEISSMANN F.Monocytes in atherosclerosis:subsets and functions.Nat Rev Cardiol, 0,7(2):77-86.
    [51] MANEA S A, VLAD M L, LAZAR A G, et al.Pharmacological inhibition of lysine-specific demethylase 1a reduces atherosclerotic lesion formation in apolipoprotein e-deficient mice by a mechanism involving decreased oxidative stress and inflammation; potential implications in human atherosclerosis.Antioxidants (Basel), 2,1(12):2382.
    [52] ZHANG X, SUN J, CANFRN-DUQUE A, et al.Deficiency of histone lysine methyltransferase SETDB2 in hematopoietic cells promotes vascular inflammation and accelerates atherosclerosis.JCI Insight, 1,6(12):e147984.
    [53] NEELE A E, PRANGE K H, HOEKSEMA M A, et al.Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells.Epigenomics, 7,9(4):383-391.
    [54] NEELE A E, GIJBELS M J J, VAN DER VELDEN S, et al.Myeloid Kdm6b deficiency results in advanced atherosclerosis.Atherosclerosis, 8,5:156-165.
    [55] NEELE A E, CHEN H J, GIJBELS M J J, et al.Myeloid Ezh2 deficiency limits atherosclerosis development.Front Immunol, 0,1:594603.
    [56] ZHANG X, WANG Y, YUAN J, et al.Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3.J Exp Med, 8,5(5):1365-1382.
    [57] MURRAY P J, ALLEN J E, BISWAS S K, et al.Macrophage activation and polarization:nomenclature and experimental guidelines.Immunity, 4,1(1):14-20.
    [58] HOEKSEMA M A, DE WINTHER M P.Epigenetic regulation of monocyte and macrophage function.Antioxid Redox Signal, 6,5(14):758-774.
    [59] WILLEMSEN L, PRANGE K H M, NEELE A E, et al.DOT1L regulates lipid biosynthesis and inflammatory responses in macrophages and promotes atherosclerotic plaque stability.Cell Rep, 2,1(8):111703.
    [60] GAO J, CAO H, HU G, et al.The mechanism and therapy of aortic aneurysms.Signal Transduct Target Ther, 3,8(1):55.
    [61] LINO CARDENAS C L, KESSINGER C W, MACDONALD C, et al.Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm.JCI Insight, 8,3(5):e97493.
    [62] LE T, HE X, HUANG J, et al.Knockdown of long noncoding RNA GAS5 reduces vascular smooth muscle cell apoptosis by inactivating EZH2-mediated RIG-I signaling pathway in abdominal aortic aneurysm.J Transl Med, 1,9(1):466.
    [63] DAVIS F M, TSOI L C, MELVIN W J, et al.Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms.J Exp Med, 1,8(6):e20201839.
    [64] ZHANG H, WANG Y, BIAN X, et al.MicroRNA-194 acts as a suppressor during abdominal aortic aneurysm via inhibition of KDM3A-mediated BNIP3.Life Sci, 1,7:119309.
    [65] LONG F, WANG Q, YANG D, et al.Targeting JMJD3 histone demethylase mediates cardiac fibrosis and cardiac function following myocardial infarction.Biochem Biophys Res Commun, 0,8(4):671-677.
    [66] GUO Z, LU J, LI J, et al.JMJD3 inhibition protects against isoproterenol-induced cardiac hypertrophy by suppressing β-MHC expression.Mol Cell Endocrinol, 8,7:1-14.
    [67] SONG S, ZHANG R, MO B, et al.EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation.J Mol Cell Cardiol, 9,5:119-133.
    [68] SUNG P H, LUO C W, CHIANG J Y, et al.The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction.Am J Transl Res, 0,2(7):3255-3271.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Ziwei, WANG Meifei, WANG Qiqi, WANG Haopeng, ZHOU Rong, YUAN Ziqiao, ZHAO Wen. Association of histone methylation modification with cardiovascular diseases[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2025,33(4):286-296.

Copy
Share
Article Metrics
  • Abstract:36
  • PDF: 88
  • HTML: 0
  • Cited by: 0
History
  • Received:April 10,2024
  • Revised:July 04,2024
  • Online: May 16,2025
Article QR Code