Advances in fat mass and obesity-related protein-mediated N6-adenylate methylation in atherosclerosis
Author:
Affiliation:

1.Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China;2.Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541106, China)

Clc Number:

R365;R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    N6-methyladenosine (m6A) is the most common mRNA modification in eukaryotes, and fat mass and obesity-related protein (FTO), are its demethylases, which efficiently remove the modification of m6A mRNA, and is strongly associated with obesity. Atherosclerosis is a chronic inflammatory lesion of the blood vessel wall driven by lipids.It was found that FTO-mediated m6A may influence the process of atherosclerosis through lipid metabolism, oxidative stress, mitochondrial dysfunction, and macrophage foaminess.

    Reference
    [1] BENJAMIN E J, MUNTNER P, ALONSO A, et al.Heart disease and stroke statistics-2019 update:a report from the American heart association.Circulation, 9,9(10):e56-e528.
    [2] CHEW N W S, LOONG S S E, FOO R.Epigenetics in cardiovascular health and disease.Prog Mol Biol Transl Sci, 3,7:105-134.
    [3] PETRI B J, KLINGE C M.m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer.J Mol Endocrinol, 3,0(2):e220110.
    [4] 阳敏, 刘嘉琪, 朱肖, 等.N6-甲基腺嘌呤调控线粒体功能及其在代谢性疾病中的研究进展.中国动脉硬化杂志, 2,0(5):442-448.YANG M, LIU J Q, ZHU X, et al.N6-methyladenine regulates mitochondrial function and its research progress in metabolic diseases.Chin J Arterioscler, 2,0(5):442-448.
    [5] JIA G, FU Y, ZHAO X, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO.Nat Chem Biol, 1,7(12):885-887.
    [6] WARMINSKI M, TREPKOWSKA E, SMIETANSKI M, et al.Trinucleotide mRNA cap analogue N6-benzylated at the site of posttranscriptional m6Am mark facilitates mRNA purification and confers superior translational properties in vitro and in vivo.J Am Chem Soc, 4,6(12):8149-8163.
    [7] LIU C, MOU S, PAN C.The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease:a systematic review and Meta-analysis.PLoS One, 3,8(8):e71901.
    [8] SHEN Y, XU L R, TANG X, et al.Identification of potential therapeutic targets for atherosclerosis by analysing the gene signature related to different immune cells and immune regulators in atheromatous plaques.BMC Med Genomics, 1,4(1):145.
    [9] GRUNNET L G, NILSSON E, LING C, et al.Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue.Diabetes, 9,8(10):2402-2408.
    [10] FISCHER J, KOCH L, EMMERLING C, et al.Inactivation of the Fto gene protects from obesity.Nature, 9,8(7240):894-898.
    [11] CHEN A, CHEN X, CHENG S, et al.FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells.Biochim Biophys Acta Mol Cell Biol Lipids, 8,3(5):538-548.
    [12] NICHOLLS S J, FUJINO M.HDL cholesterol and cardiovascular risk:teasing the answer from the complexity.Eur J Prev Cardiol, 3,0(8):644-645.
    [13] XU Z Y, JING X, XIONG X D.Emerging role and mechanism of the FTO gene in cardiovascular diseases.Biomolecules, 3,3(5):850.
    [14] YIN D, LI Y, LIAO X, et al.FTO:a critical role in obesity and obesity-related diseases.Br J Nutr, 3,0(10):1657-1664.
    [15] MERKESTEIN M, LABER S, MCMURRAY F, et al.FTO influences adipogenesis by regulating mitotic clonal expansion.Nat Commun, 5,6:6792.
    [16] WU R, LIU Y, YAO Y, et al.FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism.Biochim Biophys Acta Mol Cell Biol Lipids, 8,3(10):1323-1330.
    [17] WANG X, LU Z, GOMEZ A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability.Nature, 4,5(7481):117-120.
    [18] WANG X, WU R, LIU Y, et al.m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7.Autophagy, 0,6(7):1221-1235.
    [19] WU R, GUO G, BI Z, et al.m6A methylation modulates adipogenesis through JAK2-STAT3-C/EBPβ signaling.Biochim Biophys Acta Gene Regul Mech, 9,2(8):796-806.
    [20] SHEN Z, LIU P, SUN Q, et al.FTO inhibits UPRmt-induced apoptosis by activating JAK2/STAT3 pathway and reducing m6A level in adipocytes.Apoptosis, 1,6(7/8):474-487.
    [21] WANG C Y, SHIE S S, WEN M S, et al.Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism.Sci Signal, 5,8(407):ra127.
    [22] MINER G E, SO C M, EDWARDS W, et al.PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport.Dev Cell, 3,8(14):1250-1265.
    [23] WEI D, SUN Q, LI Y, et al.Leptin reduces Plin5 m6A methylation through FTO to regulate lipolysis in piglets.Int J Mol Sci, 1,2(19):10610.
    [24] IKEDA K, MARETICH P, KAJIMURA S.The common and distinct features of brown and beige adipocytes.Trends Endocrinol Metab, 8,9(3):191-200.
    [25] ROTH C L, MOLICA F, KWAK B R.Browning of white adipose tissue as a therapeutic tool in the fight against atherosclerosis.Metabolites, 1,1(5):319.
    [26] WU R, WANG Y, CHEN Y, et al.m6A methylation promotes white-to-beige fat transition by facilitating Hif1α translation.EMBO Rep, 1,2(11):e52348.
    [27] MYLONIS I, SIMOS G, PARASKEVA E.Hypoxia-inducible factors and the regulation of lipid metabolism.Cells, 9,8(3):214.
    [28] PAN Q, CHEN C, YANG Y J.Top five stories of the cellular landscape and therapies of atherosclerosis:current knowledge and future perspectives.Curr Med Sci, 4,4(1):1-27.
    [29] MCMANAMAN J L, BALES E S, ORLICKY D J, et al.Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease.J Lipid Res, 3,4(5):1346-1359.
    [30] KURAMOTO K, OKAMURA T, YAMAGUCHI T, et al.Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation.J Biol Chem, 2,7(28):23852-23863.
    [31] ZHOU P L, LI M, HAN X W, et al.Perilipin 5 deficiency promotes atherosclerosis progression through accelerating inflammation, apoptosis, and oxidative stress.J Cell Biochem, 9,0(11):19107-19123.
    [32] ZHANG Y, MURUGESAN P, HUANG K, et al.NADPH oxidases and oxidase crosstalk in cardiovascular diseases:novel therapeutic targets.Nat Rev Cardiol, 0,7(3):170-194.
    [33] LOPEZ-SANZ L, BERNAL S, RECIO C, et al.SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition.Lab Invest, 8,8(10):1276-1290.
    [34] DU J, LIAO W, LIU W, et al.N6-adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation.Dev Cell, 0,5(6):737-753.
    [35] GAO M, LIU Y, CHEN Y, et al.miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2.Free Radic Biol Med, 6,2:39-49.
    [36] ZHOU J, WAN J, SHU X E, et al.N6-methyladenosine guides mRNA alternative translation during integrated stress response.Mol Cell, 8,9(4):636-647.
    [37] 乔莞宁, 陈虹印, 张扬.氧化应激与动脉粥样硬化.中国动脉硬化杂志, 3,1(4):312-321.QIAO G N, CHEN H Y, ZHANG Y.Oxidative stress and atherosclerosis.Chin J Arterioscler, 3,1(4):312-321.
    [38] LIM A, ZHOU J, SINHA R A, et al.Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity.Biochem Biophys Res Commun, 6,9(3):476-481.
    [39] WANG X, HUANG N, YANG M, et al.FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis.Cell Death Dis, 7,8(3):e2702.
    [40] ZHOU Y, WANG Q, DENG H, et al.N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics.Cell Death Dis, 2,3(1):72.
    [41] ZHOU J, WAN J, GAO X, et al.Dynamic m6A mRNA methylation directs translational control of heat shock response.Nature, 5,6(7574):591-594.
    [42] DODGE J D, BROWDER N J, PELLEGRINO M W.Mitochondrial recovery by the UPRmt:insights from C.elegans.Semin Cell Dev Biol, 4,4(Pt A):59-68.
    [43] MATSUO M.ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis.J Pharmacol Sci, 2,8(2):197-203.
    [44] SZNT M, GUPTE R, KRAUS W L, et al.PARPs in lipid metabolism and related diseases.Prog Lipid Res, 1,4:101117.
    [45] HU H J, WANG X H, ZHANG T Q, et al.PLK1 promotes cholesterol efflux and alleviates atherosclerosis by up-regulating ABCA1 and ABCG1 expression via the AMPK/PPARγ/LXRα pathway.Biochim Biophys Acta Mol Cell Biol Lipids, 2,7(12):159221.
    [46] ZHANG Y, ZHOU X, CHENG X, et al.PRKAA1, stabilized by FTO in an m6A-YTHDF2-dependent manner, promotes cell proliferation and glycolysis of gastric cancer by regulating the redox balance.Neoplasma, 2,9(6):1338-1348.
    [47] WANG T, LU H.Ganoderic acid A inhibits ox-LDL-induced THP-1-derived macrophage inflammation and lipid deposition via Notch1/PPARγ/CD36 signaling.Adv Clin Exp Med, 1,0(10):1031-1041.
    [48] MO C, YANG M, HAN X, et al.Fat mass and obesity-associated protein attenuates lipid accumulation in macrophage foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice.J Hypertens, 7,5(4):810-821.
    [49] LAWRENCE T, NATOLI G.Transcriptional regulation of macrophage polarization:enabling diversity with identity.Nat Rev Immunol, 1,1(11):750-761.
    [50] GU X, ZHANG Y, LI D, et al.N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation.Cell Signal, 0,9:109553.
    [51] NATHANAEL J, SUARDANA P, VIANNEY Y M, et al.The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus:a review.Chem Biol Drug Des, 2,9(2):344-361.
    [52] FAN X, LI X, LI J, et al.Polystyrene nanoplastics induce glycolipid metabolism disorder via NF-κB and MAPK signaling pathway in mice.J Environ Sci(China), 4,7:553-566.
    [53] GIAMMANCO A, SPINA R, CEFALU` A B, et al.ApoC-Ⅲ:a gatekeeper in controlling triglyceride metabolism.Curr Atheroscler Rep, 3,5(3):67-76.
    [54] CHEN Y J, CHEN C C, LI T K, et al.Docosahexaenoic acid suppresses the expression of FoxO and its target genes.J Nutr Biochem, 2,3(12):1609-1616.
    [55] ZHAO N, TAN H, WANG L, et al.Palmitate induces fat accumulation via repressing FoxO1-mediated ATGL-dependent lipolysis in HepG2 hepatocytes.PLoS One, 1,6(1):e0243938.
    [56] SHI L, TAO Z, ZHENG L, et al.FoxO1 regulates adipose transdifferentiation and iron influx by mediating Tgfβ1 signaling pathway.Redox Biol, 3,3:102727.
    [57] LUO J, WANG F, SUN F, et al.Targeted inhibition of FTO demethylase protects mice against LPS-induced septic shock by suppressing NLRP3 inflammasome.Front Immunol, 1,2:663295.
    [58] LV D, DING S, ZHONG L, et al.m6A demethylase FTO-mediated downregulation of DACT1 mRNA stability promotes Wnt signaling to facilitate osteosarcoma progression.Oncogene, 2,1(12):1727-1741.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIE Zhuoyi, CHEN Songtao, SUN Xuan, YANG Peijuan, CHEN Yali, GUI Qinjun, ZUO Jianhong. Advances in fat mass and obesity-related protein-mediated N6-adenylate methylation in atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2025,33(3):257-263.

Copy
Share
Article Metrics
  • Abstract:48
  • PDF: 170
  • HTML: 0
  • Cited by: 0
History
  • Received:March 15,2024
  • Revised:April 03,2024
  • Online: April 02,2025
Article QR Code