Advances in the influence of the gut microbiota on metabolic disease-related vascular calcification
Author:
Affiliation:

Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing 400016)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [55]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The gut microbiome actively regulates host immunity, digestive processes, and the function of the intestinal endocrine system. Additionally, it modulates host neural signal transmission and nutrient metabolism through metabolite generation. Vascular calcification involves the deposition of calcium phosphate in blood vessel walls, secondary to metabolic disorders such as chronic kidney disease, atherosclerosis, diabetes, and osteoporosis. Recent research spanning the past two decades has indicated a close correlation between shifts in the composition and functionality of the gut microbiota, along with its metabolites, and the onset of metabolic disease-related vascular calcification. This paper presents a comprehensive review of the roles and mechanisms of the gut microbiota in this context.

    Reference
    [1] PAN W, JIE W, HUANG H.Vascular calcification:molecular mechanisms and therapeutic interventions.MedComm (2020), 3,4(1):e200.
    [2] DE VOS W M, TILG H, VAN HUL M, et al.Gut microbiome and health:mechanistic insights.Gut, 2,1(5):1020-1032.
    [3] FAN Y, PEDERSEN O.Gut microbiota in human metabolic health and disease.Nat Rev Microbiol, 1,9(1):55-71.
    [4] BAO W H, YANG W L, SU C Y, et al.Relationship between gut microbiota and vascular calcification in hemodialysis patients.Ren Fail, 3,5(1):2148538.
    [5] CHEN Z, LV M, LIANG J, et al.Neuropeptide Y-mediated gut microbiota alterations aggravate postmenopausal osteoporosis.Adv Sci (Weinh), 3,0(33):e2303015.
    [6] WANG C, MA Q, YU X.Bile acid network and vascular calcification-associated diseases:unraveling the intricate connections and therapeutic potential.Clin Interv Aging, 3,8:1749-1767.
    [7] SHEN W D, LIN X, LIU H M, et al.Gut microbiota accelerates obesity in peri-/post-menopausal women via Bacteroides fragilis and acetic acid.Int J Obes (Lond), 2,6(10):1918-1924.
    [8] JIANG T, XU C, LIU H, et al.Linderae radix ethanol extract alleviates diet-induced hyperlipidemia by regulating bile acid metabolism through gut microbiota.Front Pharmacol, 1,2:627920.
    [9] LEE C, LEE S, YOO W.Metabolic interaction between host and the gut microbiota during high-fat diet-induced colorectal cancer.J Microbiol, 4,2(3):153-165.
    [10] CRUDELE L, GADALETA R M, CARIELLO M, et al.Gut microbiota in the pathogenesis and therapeutic approaches of diabetes.EBioMedicine, 3,7:104821.
    [11] HEZAVEH K, SHINDE R S, KLTGEN A, et al.Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity.Immunity, 2,5(2):324-340.
    [12] 胡春燕, 张赛, 靳晶晶, 等.维持性血液透析患者全血Runx2甲基化水平与血管钙化的关系.中国动脉硬化杂志, 2,0(6):517-523.HU C Y, ZHANG S, JIN J J, et al.The relationship between Runx2 methylation level and vascular calcification in maintenance hemodialysis patients.Chin J Arterioscler, 2,0(6):517-523.
    [13] WANG P, WU B, YOU S, et al.DNA polymerase gamma recovers mitochondrial function and inhibits vascular calcification by interacted with p53.Int J Biol Sci, 2,8(1):409-425.
    [14] VIEGAS C, ARAU'JO N, MARREIROS C, et al.The interplay between mineral metabolism, vascular calcification and inflammation in chronic kidney disease (CKD):challenging old concepts with new facts.Aging (Albany NY), 9,1(12):4274-4299.
    [15] HE M, WEI W, ZHANG Y, et al.Gut microbial metabolites SCFAs and chronic kidney disease.J Transl Med, 4,2(1):172.
    [16] LIU Y H, PENG P, HUNG W C, et al.Comparative gut microbiome differences between high and low aortic arch calcification score in patients with chronic diseases.Int J Mol Sci, 3,4(6):5673.
    [17] SUTTON N R, MALHOTRA R, ST HILAIRE C, et al.Molecular mechanisms of vascular health:insights from vascular aging and calcification.Arterioscler Thromb Vasc Biol, 3,3(1):15-29.
    [18] MIYAZAKI-ANZAI S, MASUDA M, SHIOZAKI Y, et al.Free deoxycholic acid exacerbates vascular calcification in CKD through ER stress-mediated ATF4 activation.Kidney0,1, 2(5):857-868.
    [19] SUN M, FANG Y, ZHENG J, et al.Role of symbiotic microbiota dysbiosis in the progression of chronic kidney disease accompanied with vascular calcification.Front Pharmacol, 4,4:1306125.
    [20] WANG X, YANG S, LI S, et al.Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents.Gut, 0,9(12):2131-2142.
    [21] ZHANG Z M, YANG L, WAN Y, et al.Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of rehmanniae radix preparata and corni fructus on adenine-induced CKD rats.J Chromatogr B Analyt Technol Biomed Life Sci, 1,4:122728.
    [22] HASHIMOTO N, MATSUI I, ISHIZUKA S, et al.Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway Independent manner.Kidney Int, 0,7(6):1164-1180.
    [23] LI C, ZHANG S, CHEN X, et al.Farnesoid X receptor activation inhibits TGFBR1/TAK1-mediated vascular inflammation and calcification via miR-135a-5p.Commun Biol, 0,3(1):327.
    [24] HAO Q Y, YAN J, WEI J T, et al.Prevotella copri promotes vascular calcification via lipopolysaccharide through activation of NF-κB signaling pathway.Gut Microbes, 4,6(1):2351532.
    [25] MERINO-RIBAS A, ARAUJO R, PEREIRA L, et al.Vascular calcification and the gut and blood microbiome in chronic kidney disease patients on peritoneal dialysis:a pilot study.Biomolecules, 2,2(7):867.
    [26] 韦金涛.鼠李糖乳杆菌GG对CKD大鼠血管钙化的影响及其机制研究.广州:南方医科大学, 2022.WEI J T.Effect of Lactobacillus rhamnosus GG on CKD rat vascular calcification and the mechanisms exploration.Guangzhou:Southern Medical University, 2022.
    [27] EVENEPOEL P, DEJONGH S, VERBEKE K, et al.The role of gut dysbiosis in the bone-vascular axis in chronic kidney disease.Toxins (Basel), 0,2(5):285.
    [28] HAGHIKIA A, ZIMMERMANN F, SCHUMANN P, et al.Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism.Eur Heart J, 2,3(6):518-533.
    [29] DURHAM A L, SPEER M Y, SCATENA M, et al.Role of smooth muscle cells in vascular calcification:implications in atherosclerosis and arterial stiffness.Cardiovasc Res, 8,4(4):590-600.
    [30] 王焕辉, 王蓓, 覃咏梅, 等.氧化三甲胺致动脉粥样硬化作用及其防治的研究进展.中国动脉硬化杂志, 9,7(2):175-179.WANG H H, WANG B, QIN Y M, et al.Research progress on atherosclerosis induced by trimethylamine oxide and its prevention and treatment.Chin J Arterioscler, 9,7(2):175-179.
    [31] HE L, YANG W, YANG P, et al.Higher serum trimethylamine-N-oxide levels are associated with increased abdominal aortic calcification in hemodialysis patients.Ren Fail, 2,4(1):2019-2027.
    [32] YAN J, PAN Y, SHAO W, et al.Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling.Microbiome, 2,0(1):195.
    [33] GUAN B, TONG J, HAO H, et al.Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases.Acta Pharm Sin B, 2,2(5):2129-2149.
    [34] MIYAZAKI-ANZAI S, MASUDA M, KOHNO S, et al.Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation.J Lipid Res, 8,9(9):1709-1713.
    [35] NESCI A, CARNUCCIO C, RUGGIERI V, et al.Gut microbiota and cardiovascular disease:evidence on the metabolic and inflammatory background of a complex relationship.Int J Mol Sci, 3,4(10):9087.
    [36] CHIANG J Y L, FERRELL J M.Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy.Am J Physiol Gastrointest Liver Physiol, 0,8(3):G554-G573.
    [37] BOSTRM K I, JUMABAY M, MATVEYENKO A, et al.Activation of vascular bone morphogenetic protein signaling in diabetes mellitus.Circ Res, 1,8(4):446-457.
    [38] SANNA S, VAN ZUYDAM N R, MAHAJAN A, et al.Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases.Nat Genet, 9,1(4):600-605.
    [39] KRISKO T I, NICHOLLS H T, BARE C J, et al.Dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice.Cell Metab, 0,1(3):592-604.
    [40] ZHONG H, REN H, LU Y, et al.Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-nave type 2 diabetics.EBioMedicine, 9,7:373-383.
    [41] ZHANG J, GUO Z, XUE Z, et al.A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities.ISME J, 5,9(9):1979-1990.
    [42] TUOMAINEN M, LINDSTRM J, LEHTONEN M, et al.Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals.Nutr Diabetes, 8,8(1):35.
    [43] MISHRA S P, WANG B, JAIN S, et al.A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut.Gut, 3,2(10):1848-1865.
    [44] CHEN C, LIANG Z F, HE Y Q, et al.Pravastatin promotes type 2 diabetes vascular calcification through activating intestinal Bacteroides fragilis to induce macrophage M1 polarization.J Diabetes, 4,6(6):e13514.
    [45] CHEN Y, WANG Y, TANG R, et al.Dendritic cells-derived interferon-λ1 ameliorated inflammatory bone destruction through inhibiting osteoclastogenesis.Cell Death Dis, 0,1(6):414.
    [46] AKERS E J, NICHOLLS S J, DI BARTOLO B A.Plaque calcification:do lipoproteins have a role?.Arterioscler Thromb Vasc Biol, 9,9(10):1902-1910.
    [47] OZAKI D, KUBOTA R, MAENO T, et al.Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women.Osteoporos Int, 1,2(1):145-156.
    [48] CHEN Y, YANG C, DAI Q, et al.Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner.J Nanobiotechnology, 3,1(1):125.
    [49] LIU S, LI G, XU H, et al."Cross-talk" between gut microbiome dysbiosis and osteoarthritis progression:a systematic review.Front Immunol, 3,4:1150572.
    [50] PARK J H, LEE J, LEE G R, et al.Cholesterol sulfate inhibits osteoclast differentiation and survival by regulating the AMPK-Sirt1-NF-κB pathway.J Cell Physiol, 3,8(9):2063-2075.
    [51] CHOU R H, CHEN C Y, CHEN I C, et al.Trimethylamine N-Oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina.Sci Rep, 9,9(1):4249.
    [52] WANG N, HAO Y, FU L.Trimethylamine-N-oxide promotes osteoclast differentiation and bone loss via activating ROS-dependent NF-κB signaling pathway.Nutrients, 2,4(19):3955.
    [53] DENG Y, ZHOU M, WANG J, et al.Involvement of the microbiota-gut-brain axis in chronic restraint stress:disturbances of the kynurenine metabolic pathway in both the gut and brain.Gut Microbes, 1,3(1):1-16.
    [54] DOHNALOV L, LUNDGREN P, CARTY J R E, et al.A microbiome-dependent gut-brain pathway regulates motivation for exercise.Nature, 2,2(7941):739-747.
    [55] IBRAHIM I, SYAMALA S, AYARIGA J A, et al.Modulatory effect of gut microbiota on the gut-brain, gut-bone axes, and the impact of cannabinoids.Metabolites, 2,2(12):1247.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Qian, TANG Ziqi, DING Yinyuan. Advances in the influence of the gut microbiota on metabolic disease-related vascular calcification[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2025,33(3):194-201.

Copy
Share
Article Metrics
  • Abstract:75
  • PDF: 203
  • HTML: 0
  • Cited by: 0
History
  • Received:March 26,2024
  • Revised:June 07,2024
  • Online: April 02,2025
Article QR Code