Advances in the CXCL12/MIF-CXCR4 bioaxis for therapeutic atherosclerosis applications
Author:
Affiliation:

1.Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Traditional Chinese Medicine, ;2.Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Atherosclerosis (As) is one of the major causes of high mortality and morbidity worldwide. Chemokines and their receptors are involved in the pathogenesis of As. CXC chemokine ligand 12 (CXCL12) is a member of the chemokine family, and macrophage migration inhibition factor (MIF) is a chemokine like functional chemokine, CXCL12 and MIF together play important roles in As through CXC chemokine receptor 4 (CXCR4). The CXCL12-CXCR4 bioaxis is an important chemokine/chemokine receptor axis that can regulate various biological behaviors such as cell proliferation, mobilization, differentiation, homing, and chemotaxis. Numerous studies have found that it widely affects various cells related to As and is closely related to the formation and development of As plaques. Therefore, the CXCL12/MIF-CXCR4 bioaxis is expected to become a more precise target for As treatment, and regulating the CXCL12/MIF-CXCR4 bioaxis strategy provides new ideas for the prevention and treatment of As.

    Reference
    [1] AIFAH A, IWELUNMOR J, AKWANALO C, et al.The Kathmandu Declaration on global CVD/hypertension research and implementation science:a framework to advance implementation research for cardiovascular and other noncommunicable diseases in low- and middle-income countries.Glob Heart, 9,4(2):103-107.
    [2] MURAD H A S, RAFEEQ M M, ALQURASHI T M A.Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis:still a debate.Ann Med, 1,3(1):1598-1612.
    [3] MOSER B, LOETSCHER P.Lymphocyte traffic control by chemokines.Nat Immunol, 1,2(2):123-128.
    [4] SALLUSTO F, BAGGIOLINI M.Chemokines and leukocyte traffic.Nat Immunol, 8,9(9):949-952.
    [5] ZLOTNIK A, YOSHIE O.Chemokines:a new classification system and their role in immunity.Immun, 0,2(2):121-127.
    [6] MURPHY P M.International union of pharmacology.XXX.update on chemokine receptor nomenclature.Pharmacol Rev, 2,4(2):227-229.
    [7] VANDERCAPPELLEN J, VAN DAMME J, STRUYF S.The role of CXC chemokines and their receptors in cancer.Cancer Lett, 8,7(2):226-244.
    [8] LIEKENS S, SCHOLS D, HATSE S.CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization.Curr Pharm Des, 0,6(35):3903-3920.
    [9] FUJIWARA K, MATSUKAWA A, OHKAWARA S, et al.Functional distinction between CXC chemokines, interleukin-8(IL-8), and growth related oncogene(GRO)α in neutrophil infiltration.Lab Invest, 2,2(1):15-23.
    [10] IBRAHIM S A, GADALLA R, EL-GHONAIMY E A, et al.Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways.Mol Cancer, 7,6(1):57.
    [11] YU L, CECIL J, PENG S B, et al.Identification and expression of novel isoforms of human stromal cell-derived factor 1.Gene, 6,4:174-179.
    [12] DRING Y, VAN DER VORST E P C, DUCHENE J, et al.CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease.Circ, 9,9(10):1338-1340.
    [13] DAR A, SCHAJNOVITZ A, LAPID K, et al.Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells.Leukemia, 1,5(8):1286-1296.
    [14] POZZOBON T, GOLDONI G, VIOLA A, et al.CXCR4 signaling in health and disease.Immunol Lett, 6,7:6-15.
    [15] GAO J H, YU X H, TANG C K.CXC chemokine ligand 12(CXCL12) in atherosclerosis:an underlying therapeutic target.Clin Chim Acta, 9,5:538-544.
    [16] KOCH C, ENGELE J.Functions of the CXCL12 receptor ACKR3/CXCR7-what has been perceived and what has been overlooked.Mol Pharmacol, 0,8(5):577-585.
    [17] BERNHAGEN J, MITCHELL R A, CALANDRA T, et al.Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor(MIF).Biochem, 4,3(47):14144-14155.
    [18] BERNHAGEN J, KROHN R, LUE H Q, et al.MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.Nat Med, 7,3(5):587-596.
    [19] PAN J H, SUKHOVA G K, YANG J T, et al.Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice.Circulation, 4,9(25):3149-3153.
    [20] QI D K, HU X Y, WU X H, et al.Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion.J Clin Invest, 9,9(12):3807-3816.
    [21] CHEN L H, ADVANI S L, THAI K, et al.SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease.PLoS One, 4,9(3):e92227.
    [22] DRING Y, NOELS H, VAN DER VORST E P C, et al.Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity:evidence from mouse and human studies.Circ, 7,6(4):388-403.
    [23] GOMEZ D, OWENS G K.Smooth muscle cell phenotypic switching in atherosclerosis.Cardiovasc Res, 2,5(2):156-164.
    [24] ZERNECKE A, BERNHAGEN J, WEBER C.Macrophage migration inhibitory factor in cardiovascular disease.Circ, 8,7(12):1594-1602.
    [25] ZHENG H, FU G S, DAI T, et al.Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway.J Cardiovasc Pharmacol, 7,0(3):274-280.
    [26] ZHAO Z H, MA X L, MA J X, et al.Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway.Chem Biol Interact, 8,6:45-51.
    [27] 董国华, 杜银苹, 耿猛, 等.AntagomiR-21上调SIRT1激活PI3K/Akt/eNOS信号通路改善T2DM大鼠冠状动脉内皮依赖性舒张.中国动脉硬化杂志, 3,1(9):771-778.DONG G H, DU Y P, GENG M, et al.AntagomiR-21 upregulates SIRT1 to activate PI3K/Akt/eNOS signal pathway and improves endothelium-dependent relaxation of coronary arteries in T2DM rats.Chin J Arterioscler, 3,1(9):771-778.
    [28] KAWASHIMA S, YOKOYAMA M.Dysfunction of endothelial nitric oxide synthase and atherosclerosis.Arterioscler Thromb Vasc Biol, 4,4(6):998-1005.
    [29] PARK S, SORENSON C M, SHEIBANI N.PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis.Clin Sci (Lond), 5,9(3):217-234.
    [30] KRAEMER B F, BORST O, GEHRING E M, et al.PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1).J Mol Med (Berl), 0,8(12):1277-1288.
    [31] GEAR A R, SUTTITANAMONGKOL S, VIISOREANU D, et al.Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function.Blood, 1,7(4):937-945.
    [32] CHATTERJEE M, RATH D, GAWAZ M.Role of chemokine receptors CXCR4 and CXCR7 for platelet function.Biochem Soc Trans, 5,3(4):720-726.
    [33] RUGGERI Z M.Platelets in atherothrombosis.Nat Med, 2,8(11):1227-1234.
    [34] HILGENDORF I, SWIRSKI F K, ROBBINS C S.Monocyte fate in atherosclerosis.Arterioscler Thromb Vasc Biol, 5,5(2):272-279.
    [35] WU M Y, LI C J, HOU M F, et al.New insights into the role of inflammation in the pathogenesis of atherosclerosis.Int J Mol Sci, 7,8(10):2034.
    [36] CHATTERJEE M, VON UNGERN-STERNBERG S N I, SEIZER P, et al.Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7.Cell Death Dis, 5,6(11):e1989.
    [37] OLIVE M, MELLAD J A, BELTRAN L E, et al.p21Cip1 modulates arterial wound repair through the stromal cell-derived factor-1/CXCR4 axis in mice.J Clin Invest, 8,8(6):2050-2061.
    [38] AIT-OUFELLA H, SAGE A P, MALLAT Z, et al.Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.Circ Res, 4,4(10):1640-1660.
    [39] NANKI T, LIPSKY P E.Cutting edge:stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation.J Immunol, 0,4(10):5010-5014.
    [40] LIU K K Y, DOROVINI-ZIS K.Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration.J Neuroimmunol, 9,5(1/2):49-64.
    [41] DRING Y, JANSEN Y, CIMEN I, et al.B-cell-specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels.Circ Res, 0,6(6):787-788.
    [42] UPADHYE A, SRIKAKULAPU P, GONEN A, et al.Diversification and CXCR4-dependent establishment of the bone marrow B-1a cell pool governs atheroprotective IgM production linked to human coronary atherosclerosis.Circ Res, 9,5(10):e55-e70.
    [43] ZERNECKE A, BOT I, DJALALI-TALAB Y, et al.Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis.Circ Res, 8,2(2):209-217.
    [44] BOT I, DAISSORMONT I T M N, ZERNECKE A, et al.CXCR4 blockade induces atherosclerosis by affecting neutrophil function.J Mol Cell Cardiol, 4,4:44-52.
    [45] BARTEL D P.MicroRNAs:genomics, biogenesis, mechanism, and function.Cell, 4,6(2):281-297.
    [46] STASZEL T, ZAPAA B, POLUS A, et al.Role of microRNAs in endothelial cell pathophysiology.Pol Arch Med Wewn, 1,1(10):361-366.
    [47] WANG X M, MENG K, WANG H Q, et al.Identification of small extracellular vesicle subtypes in follicular fluid:insights into the function and miRNA profiles.J Cell Physiol, 1,6(8):5633-5645.
    [48] GINCKELS P, HOLVOET P.Oxidative stress and inflammation in cardiovascular diseases and cancer:role of non-coding RNAs.Yale J Biol Med, 2,5(1):129-152.
    [49] LOU X Q, WANG D W, GU Z H, et al.Mechanism of microRNA regulating the progress of atherosclerosis in apoE-deficient mice.Bioeng, 1,2(2):10994-11006.
    [50] VAN SOLINGEN C, DE BOER H C, BIJKERK R, et al.MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1+/Lin- progenitor cells in ischaemia.Cardiovasc Res, 1,2(3):449-455.
    [51] EVANS W S, SAPP R M, KIM K I, et al.Effects of exercise training on the paracrine function of circulating angiogenic cells.Int J Sports Med, 1,2(12):1047-1057.
    [52] BASSAND K, METZINGER L, NAM M, et al.MiR-126-3p is essential for CXCL12-induced angiogenesis.J Cell Mol Med, 1,5(13):6032-6045.
    [53] 秦合伟, 李彦杰, 任锟, 等.冠心康对microRNA-126和VEC的调控及抗动脉粥样硬化的作用机制研究.中华中医药学刊, 9,7(8):1813-1818.QIN H W, LI Y J, REN K, et al.Research of mechanism in guanxikang anti-atherosclerosis based on regulation of microRNA-126 and VEC.Chin Arch Tradit Chin Med, 9,7(8):1813-1818.
    [54] KONTOS C, EL BOUNKARI O, KRAMMER C, et al.Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting.Nat Commun, 0,1(1):5981.
    [55] CIMEN I, NATARELLI L, ABEDI KICHI Z, et al.Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice.Sci Transl Med, 3,5(720):eadf3357.
    [56] WEBER C, NOELS H.Atherosclerosis:current pathogenesis and therapeutic options.Nat Med, 1,7(11):1410-1422.
    [57] TILLMANN S, BERNHAGEN J, NOELS H.Arrest functions of the MIF ligand/receptor axes in atherogenesis.Front Immunol, 3,4:115.
    [58] KOENEN R R, WEBER C.Therapeutic targeting of chemokine interactions in atherosclerosis.Nat Rev Drug Discov, 0,9(2):141-153.
    [59] LACY M, KONTOS C, BRANDHOFER M, et al.Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4.Sci Rep, 8,8(1):5171.
    [60] KARSHOVSKA E, WEBER C, VON HUNDELSHAUSEN P.Platelet chemokines in health and disease.Thromb Haemost, 3,0(5):894-902.
    [61] BLANCHET X, CESAREK K, BRANDT J, et al.Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.Thromb Haemost, 4,2(6):1277-1287.
    [62] WALSH T G, HARPER M T, POOLE A W.SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.Cell Signal, 5,7(1):37-46.
    [63] SHENKMAN B, BRILL A, BRILL G, et al.Differential response of platelets to chemokines:RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha.J Thromb Haemost, 4,2(1):154-160.
    [64] LEBERZAMMER J, AGTEN S M, BLANCHET X, et al.Targeting platelet-derived CXCL12 impedes arterial thrombosis.Blood, 2,9(17):2691-2705.
    [65] DZAU V J, BRAUN-DULLAEUS R C, SEDDING D G.Vascular proliferation and atherosclerosis:new perspectives and therapeutic strategies.Nat Med, 2,8(11):1249-1256.
    [66] SHI W B, PEI H, FISCHER J J, et al.Neointimal formation in two apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility.J Lipid Res, 4,5(11):2008-2014.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIANG Zishun, CAI Jing, QIAO Tong. Advances in the CXCL12/MIF-CXCR4 bioaxis for therapeutic atherosclerosis applications[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2024,32(9):821-828.

Copy
Share
Article Metrics
  • Abstract:178
  • PDF: 1226
  • HTML: 0
  • Cited by: 0
History
  • Received:January 13,2024
  • Revised:March 12,2024
  • Online: September 30,2024
Article QR Code