Research progress on abnormal mitochondrial morphology in human diseases
Author:
Affiliation:

Hengyang Medical College of University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [52]
  • | | | |
  • Comments
    Abstract:

    Mitochondria are the “power generators” in eukaryotic cells, therefore playing vital roles for basically all cellular activities. Not only supplying energy, mitochondria are also actively regulating important cellular processes, such as apoptosis, differentiation, and proliferation. But mitochondria are not “perpetual motion machines”. In fact, mitochondria are one of the most sensitive organelles to various pathological conditions. Dysfunction of mitochondria can cause many human diseases, such as Alzheimer's disease, diabetes, ischemic heart disease, etc. It is well known that changes in mitochondrial morphology affect the mitochondrial function, and vice versa. Under pathological conditions, mitochondria undergo various morphological changes. Research studies that characterized abnormal mitochondrial morphology have enabled us to understand the mitochondrial involvement in the pathogenesis of certain human diseases. This review mainly summarizes the research progress on mitochondrial morphological changes in human diseases, aiming to provide a theoretical overview.

    Reference
    [1] PROTASONI M, ZEVIANI M.Mitochondrial structure and bioenergetics in normal and disease conditions.Int J Mol Sci, 1,2(2):586.
    [2] DURANOVA H, VALKOVA V, KNAZICKA Z, et al.Mitochondria:a worthwhile object for ultrastructural qualitative characterization and quantification of cells at physiological and pathophysiological states using conventional transmission electron microscopy.Acta Histochem, 0,2(8):151646.
    [3] JOUBERT F, PUFF N.Mitochondrial cristae architecture and functions:lessons from minimal model systems.Membranes (Basel), 1,1(7):465.
    [4] BRAND M D, ORR A L, PEREVOSHCHIKOVA I V, et al.The role of mitochondrial function and cellular bioenergetics in ageing and disease.Br J Dermatol, 3,9(Suppl 2):1-8.
    [5] LICINIO J, WONG M L.Advances in molecular psychiatry-march 2023:mitochondrial function, stress, neuroinflammation-bipolar disorder, psychosis, and Alzheimer's disease.Mol Psychiatry, 3,8(3):968-971.
    [6] KOKLESOVA L, SAMEC M, LISKOVA A, et al.Mitochondrial impairments in aetiopathology of multifactorial diseases:common origin but individual outcomes in context of 3P medicine.EPMA J, 1,2(1):27-40.
    [7] SHOSHAN-BARMATZ V, NAHON-CRYSTAL E, SHTEINFER-KUZMINE A, et al.VDAC1, mitochondrial dysfunction, and Alzheimer's disease.Pharmacol Res, 8,1:87-101.
    [8] REY F, OTTOLENGHI S, ZUCCOTTI G V, et al.Mitochondrial dysfunctions in neurodegenerative diseases:role in disease pathogenesis, strategies for analysis and therapeutic prospects.Neural Regen Res, 2,7(4):754-758.
    [9] MORADI VASTEGANI S, NASROLAHI A, GHADERI S, et al.Mitochondrial dysfunction and Parkinson's disease:pathogenesis and therapeutic strategies.Neurochem Res, 3,8(8):2285-2308.
    [10] ARISMENDI-MORILLO G, CASTELLANO-RAMREZ A, SEYFRIED T N.Ultrastructural characterization of the mitochondria-associated membranes abnormalities in human astrocytomas:functional and therapeutics implications.Ultrastruct Pathol, 7,1(3):234-244.
    [11] ZAHEDI A, ON V, PHANDTHONG R, et al.Deep analysis of mitochondria and cell health using machine learning.Sci Rep, 8,8(1):16354.
    [12] PARK J, LEE J, CHOI C.Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers.PLoS One, 1,6(8):e23211.
    [13] MCCARRON J G, WILSON C, SANDISON M E, et al.From structure to function:mitochondrial morphology, motion and shaping in vascular smooth muscle.J Vasc Res, 3,0(5):357-371.
    [14] ZAMPONI N, ZAMPONI E, CANNAS S A, et al.Mitochondrial network complexity emerges from fission/fusion dynamics.Sci Rep, 8,8(1):363.
    [15] WESTERMANN B.Mitochondrial fusion and fission in cell life and death.Nat Rev Mol Cell Biol, 0,1(12):872-884.
    [16] SAXTON W M, HOLLENBECK P J.The axonal transport of mitochondria.J Cell Sci, 2,5(Pt 9):2095-2104.
    [17] PICARD M, WHITE K, TURNBULL D M.Mitochondrial morphology, topology, and membrane interactions in skeletal muscle:a quantitative three-dimensional electron microscopy study.J Appl Physiol, 3,4(2):161-171.
    [18] YU R, LENDAHL U, NISTR M, et al.Regulation of mammalian mitochondrial dynamics:opportunities and challenges.Front Endocrinol (Lausanne), 0,1:374.
    [19] SANTEL A, FULLER M T.Control of mitochondrial morphology by a human mitofusin.J Cell Sci, 1,4(Pt 5):867-874.
    [20] STOJANOVSKI D, KOUTSOPOULOS O S, OKAMOTO K, et al.Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology.J Cell Sci, 4,7(Pt 7):1201-1210.
    [21] WESTRATE L M, DROCCO J A, MARTIN K R, et al.Mitochondrial morphological features are associated with fission and fusion events.PLoS One, 4,9(4):e95265.
    [22] GUHA S, JOHNSON G V W, NEHRKE K.The crosstalk between pathological Tau phosphorylation and mitochondrial dysfunction as a key to understanding and treating Alzheimer's disease.Mol Neurobiol, 0,7(12):5103-5120.
    [23] VALERA-ALBERNI M, CANTO C.Mitochondrial stress management:a dynamic journey.Cell Stress, 8,2(10):253-274.
    [24] SRINIVASAN S, GUHA M, KASHINA A, et al.Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection.Biochim Biophys Acta Bioenerg, 7,8(8):602-614.
    [25] SHIBATA Y, HU J J, KOZLOV M M, et al.Mechanisms shaping the membranes of cellular organelles.Annu Rev Cell Dev Biol, 9,5:329-354.
    [26] NAVARATNARAJAH T, ANAND R, REICHERT A S, et al.The relevance of mitochondrial morphology for human disease.Int J Biochem Cell Biol, 1,4:105951.
    [27] PERNAS L, SCORRANO L.Mito-morphosis:mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.Annu Rev Physiol, 6,8:505-531.
    [28] SWALSINGH G, PANI P, BAL N C.Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases.Clin Sci (Lond), 2,6(24):1851-1871.
    [29] VINCENT A E, NG Y S, WHITE K, et al.The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy.Sci Rep, 6,6(1):30610.
    [30] GALLOWAY C A, YOON Y.Mitochondrial morphology in metabolic diseases.Antioxid Redox Signal, 3,9(4):415-430.
    [31] FULCERI F, BIAGIONI F, LIMANAQI F, et al.Ultrastructural characterization of peripheral denervation in a mouse model of typeⅢspinal muscular atrophy.J Neural Transm (Vienna), 1,8(6):771-791.
    [32] LIU T Y, STEPHAN T, CHEN P, et al.Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain.Proc Natl Acad Sci U S A, 2,9(52):e2215799119.
    [33] DENG J W, YANG M X, CHEN Y B, et al.FUS interacts with HSP60 to promote mitochondrial damage.PLoS Genet, 5,1(9):e1005357.
    [34] ZICK M, RABL R, REICHERT A S.Cristae formation-linking ultrastructure and function of mitochondria.Biochim Biophys Acta, 9,3(1):5-19.
    [35] LAVORATO M, IYER V R, DEWIGHT W, et al.Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges.Proc Natl Acad Sci U S A, 7,4(5):E849-E858.
    [36] BOARDMAN N T, TRANI G, SCALABRIN M, et al.Intracellular to interorgan mitochondrial communication in striated muscle in health and disease.Endocr Rev, 3,4(4):668-692.
    [37] TRIMMER P A, SWERDLOW R H, PARKS J K, et al.Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines.Exp Neurol, 0,2(1):37-50.
    [38] GE M Y, MOLINA J, DUCASA G M, et al.APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis.Hum Mol Genet, 1,0(3/4):182-197.
    [39] LAUBER J K.Retinal pigment epithelium:ring mitochondria and lesions induced by continuous light.Curr Eye Res, 2,2(12):855-862.
    [40] DING W X, LI M, BIAZIK J M, et al.Electron microscopic analysis of a spherical mitochondrial structure.J Biol Chem, 2,7(50):42373-42378.
    [41] MIYAZONO Y, HIRASHIMA S, ISHIHARA N, et al.Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner.Sci Rep, 8,8(1):350.
    [42] YIN X M, DING W X.The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation.Autophagy, 3,9(11):1687-1692.
    [43] DORN G W 2ND, VEGA R B, KELLY D P.Mitochondrial biogenesis and dynamics in the developing and diseased heart.Genes Dev, 5,9(19):1981-1991.
    [44] MONACO C M F, HUGHES M C, RAMOS S V, et al.Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes.Diabetologia, 8,1(6):1411-1423.
    [45] SOBENIN I A, SAZONOVA M A, POSTNOV A Y, et al.Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One, 3,8(7):e68070.
    [46] SABBAH H N.Targeting the mitochondria in heart failure:a translational perspective.JACC Basic Transl Sci, 0,5(1):88-106.
    [47] LEE D S, JUNG Y W.Protective effect of right ventricular mitochondrial damage by cyclosporine a in monocrotaline-induced pulmonary hypertension.Korean Circ J, 8,8(12):1135-1144.
    [48] WONG P C, PARDO C A, BORCHELT D R, et al.An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria.Neuron, 5,4(6):1105-1116.
    [49] CHAANINE A H, JOYCE L D, STULAK J M, et al.Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction.Circ Heart Fail, 9,2(2):e005131.
    [50] ZHANG S L, HE Z M, WANG J, et al.Mitochondrial ultrastructural alterations and declined M2 receptor density were involved in cardiac dysfunction in rats after long term treatment with autoantibodies against M2 muscarinic receptor.PLoS One, 5,0(6):e0129563.
    [51] ZHENG L F, RAO Z J, GUO Y F, et al.High-intensity interval training restores glycolipid metabolism and mitochondrial function in skeletal muscle of mice with type 2 diabetes.Front Endocrinol (Lausanne), 0,1:561.
    [52] ZHANG L, TRUSHIN S, CHRISTENSEN T A, et al.Altered brain energetics induces mitochondrial fission arrest in Alzheimer's disease.Sci Rep, 6,6(1):18725.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Yi, WANG Danling. Research progress on abnormal mitochondrial morphology in human diseases[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2024,32(6):487-493.

Copy
Share
Article Metrics
  • Abstract:258
  • PDF: 815
  • HTML: 0
  • Cited by: 0
History
  • Received:April 28,2023
  • Revised:May 09,2023
  • Online: July 04,2024
Article QR Code