Targeting CD36 to regulate lipid metabolism:a new strategy for the prevention and treatment of diabetic cardiomyopathy
Author:
Affiliation:

1.Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjian, Guangdong 524000, China;2.State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, University of Hong Kong, Hong Kong 999077, China;3.Doctoral Training Platform for Research and Translation, Boshiwan, Guanchong Village, Zhongxiang, Hubei 431900, China)

Clc Number:

R5;R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Abnormalities in lipid metabolism induce myocardial structural and functional disorders, leading to the development of diabetic cardiomyopathy (DCM), which has become a hotspot in current DCM research. The transmembrane glycoprotein CD36 is a multifunctional membrane protein that facilitates fatty acid transport, which is involved in the regulation of cardiac lipid metabolism. CD36 signaling plays a key role in the pathogenesis of DCM mediated cardiac injuries. This article summarizes the structure of CD36 and its role in specific cell types, and further explores the pathophysiological role of CD36 in DCM, proposing that targeting CD36 may prove to be a potential pharmacological strategy in the prevention and treatment of DCM.

    Reference
    [1] XIA W, LI X, WU Q, et al.The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy.Front Immunol, 2,3:951381.
    [2] GLATZ J F C, HEATHER L C, LUIKEN J.CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease.Physiol Rev, 2023.DOI:10.1152/physrev.00011.2023.
    [3] UMBARAWAN Y, KAWAKAMI R, SYAMSUNARNO M, et al.Reduced fatty acid use from CD36 deficiency deteriorates streptozotocin-induced diabetic cardiomyopathy in mice.Metabolites, 1,1(12):881.
    [4] KUDA O, PIETKA T A, DEMIANOVA Z, et al.Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164:SSO also inhibits oxidized low density lipoprotein uptake by macrophages.J Biol Chem, 3,8:15547-15555.
    [5] NECULAI D, SCHWAKE M, RAVICHANDRAN M, et al.Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36.Nature, 3,4:172-176.
    [6] GILDE A J, VAN DER LEE K A, WILLEMSEN P H, et al.Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism.Circ Res, 3,2:518-524.
    [7] SUGI K, HSIEH P N, ILKAYEVA O, et al.Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.PLoS One, 8,3:e0192376.
    [8] SAMOVSKI D, SUN J, PIETKA T, et al.Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation.Diabetes, 5,4:353-359.
    [9] GLATZ J F C, LUIKEN J.Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization.J Lipid Res, 8,9:1084-1093.
    [10] SCHWENK R W, DIRKX E, COUMANS W A, et al.Requirement for distinct vesicle-associated membrane proteins in insulin-and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes.Diabetologia, 0,3:2209-2219.
    [11] LIU Y, STEINBUSCH L K M, NABBEN M, et al.Palmitate-induced vacuolar-type H+-ATPase inhibition feeds forward into insulin resistance and contractile dysfunction.Diabetes, 7,6:1521-1534.
    [12] REN B, BEST B, RAMAKRISHNAN D P, et al.LPA/PKD-1-FoxO1 signaling axis mediates endothelial cell CD36 transcriptional repression and proangiogenic and proarteriogenic reprogramming.Arterioscler Thromb Vasc Biol, 6,6:1197-1208.
    [13] CHU L Y, RAMAKRISHNAN D P, SILVERSTEIN R L.Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells.Blood, 3,2:1822-1832.
    [14] BOU KHZAM L, SON N H, MULLICK A E, et al.Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair.Am J Transl Res, 0,2:7737-7761.
    [15] GERBOD-GIANNONE M C, DALLET L, NAUDIN G, et al.Involvement of caveolin-1 and CD36 in native LDL endocytosis by endothelial cells.Biochim Biophys Acta Gen Subj, 9,3:830-838.
    [16] 蔡雅杰, 范晓迪, 白瑞娜.乳糜微粒在动脉粥样硬化防治中的作用.中国动脉硬化杂志, 3,1(9):799-805.CAI Y J, FAN X D, BAI R N.Role of coeliac particles in the prevention and treatment of atherosclerosis.Chin J Arterioscler, 3,1(9):799-805.
    [17] LI W, FEBBRAIO M, REDDY S P, et al.CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs.J Clin Invest, 0,0:3996-4006.
    [18] YANG M, SILVERSTEIN R L.CD36 signaling in vascular redox stress.Free Radic Biol Med, 9,6:159-171.
    [19] LI T T, CUI Y T, LI T H, et al.TM6SF2 reduces lipid accumulation in vascular smooth muscle cells by inhibiting LOX-1 and CD36 expression.Exp Cell Res, 3,9:113666.
    [20] YUE H, FEBBRAIO M, KLENOTIC P A, et al.CD36 enhances vascular smooth muscle cell proliferation and development of neointimal hyperplasia.Arterioscler Thromb Vasc Biol, 9,9:263-275.
    [21] VANHOUTTE D, SCHIPS T G, VO A, et al.Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy.Nat Commun, 1,2:3928.
    [22] DELEON-PENNELL K Y, TIAN Y, ZHANG B, et al.CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling.Circ Cardiovasc Genet, 6,9:14-25.
    [23] IYER R P, PATTERSON N L, ZOUEIN F A, et al.Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution.Int J Cardiol, 5,5:198-208.
    [24] TANG Y, PAN B, ZHOU X, et al.Wip1-dependent modulation of macrophage migration and phagocytosis.Redox Biol, 7,3:665-673.
    [25] ZHANG X, XU H, YU J, et al.Immune regulation of the liver through the PCSK9/CD36 pathway during heart transplant rejection.Circulation, 3,8:336-353.
    [26] YANG J, SAMBANDAM N, HAN X, et al.CD36 deficiency rescues lipotoxic cardiomyopathy.Circ Res, 7,0:1208-1217.
    [27] CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y V.The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities.Int J Cardiol, 7,5:236-244.
    [28] ZHAN J, JIN K, DING N, et al.Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction.Mol Ther Nucleic Acids, 3,1:122-138.
    [29] XU L, CHEN W, MA M, et al.Microarray profiling analysis identifies the mechanism of miR-200b-3p/mRNA-CD36 affecting diabetic cardiomyopathy via peroxisome proliferator activated receptor-γ signaling pathway.J Cell Biochem, 9,0:5193-5206.
    [30] MA X M, GENG K, LAW B Y, et al.Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes.Cell Biol Toxicol, 3,9:277-299.
    [31] SCHULZE P C, DROSATOS K, GOLDBERG I J.Lipid use and misuse by the heart.Circ Res, 6,8:1736-1751.
    [32] PHAM T, LOISELLE D, POWER A, et al.Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.Am J Physiol Cell Physiol, 4,7:C499-C507.
    [33] KUANG M, FEBBRAIO M, WAGG C, et al.Fatty acid translocase/CD36 deficiency does not energetically or functionally compromise hearts before or after ischemia.Circulation, 4,9:1550-1557.
    [34] LIN J, WANG T, LI Y, et al.N-acetylcysteine restores sevoflurane postconditioning cardioprotection against myocardial ischemia-reperfusion injury in diabetic rats.J Diabetes Res, 6,6:9213034.
    [35] MCBRIDE M R, MISTRETTA C M.Taste responses from the chorda tympani nerve in young and old Fischer rats.J Gerontol, 6,1:306-314.
    [36] WU L, WANG K, WANG W, et al.Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARα pathway.Aging Cell, 8,7:e12763.
    [37] JIN T, FU X, LIU M, et al.Finerenone attenuates myocardial apoptosis, metabolic disturbance and myocardial fibrosis in type 2 diabetes mellitus.Diabetol Metab Syndr, 3,5:87.
    [38] ZHAO T, CHEN H, CHENG C, et al.Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1.Biomed Pharmacother, 9,8:109224.
    [39] WANG Z, ZHU Y, ZHANG Y, et al.Protective effects of AS-Ⅳ on diabetic cardiomyopathy by improving myocardial lipid metabolism in rat models of T2DM.Biomed Pharmacother, 0,7:110081.
    [40] LI X, LI Z, DONG X, et al.Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis.Phytother Res, 3,7:3042-3056.
    [41] YAN M, LIU S, ZENG W, et al.The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice.Biomed Pharmacother, 3,4:114919.
    [42] ZHANG X, HAO Y.Beneficial effects of echinacoside on diabetic cardiomyopathy in diabetic Db/Db mice.Drug Des Devel Ther, 0,4:5575-5587.
    [43] WANG S, SCHIANCHI F, NEUMANN D, et al.Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis.Mol Metab, 1,3:101293.
    [44] RAMREZ E, PICATOSTE B, GONZLEZ-BRIS A, et al.Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes:role of GLP-1 isoforms in Glut4 receptor trafficking.Cardiovasc Diabetol, 8,7:12.
    [45] YING Y, ZHU H, LIANG Z, et al.GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/β-catenin pathway.J Mol Endocrinol, 5,5:245-262.
    [46] YU M, DU H, WANG B, et al.Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 ubiquitylation in diabetic hearts.Aging Dis, 0,1:286-300.
    [47] SON N H, BASU D, SAMOVSKI D, et al.Endothelial cell CD36 optimizes tissue fatty acid uptake.J Clin Invest, 8,8:4329-4342.
    [48] LUIKEN J J, KOONEN D P, WILLEMS J, et al.Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36.Diabetes, 2,1:3113-3119.
    [49] JAY A G, SIMARD J R, HUANG N, et al.SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation.J Lipid Res, 0,1:790-807.
    [50] MANSOR L S, SOUSA FIALHO M D L, YEA G, et al.Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.Cardiovasc Res, 7,3:737-748.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHOU Jiaqi, LIN Jiefu, CHEN Jiajia, XIE Lin, XIA Zhengyuan. Targeting CD36 to regulate lipid metabolism:a new strategy for the prevention and treatment of diabetic cardiomyopathy[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2023,31(12):1013-1019.

Copy
Share
Article Metrics
  • Abstract:382
  • PDF: 805
  • HTML: 0
  • Cited by: 0
History
  • Received:November 16,2023
  • Revised:December 03,2023
  • Online: December 29,2023
Article QR Code