Research progress on the role of HIF-1α in atherosclerosis
Author:
Affiliation:

1.Henan University of Chinese Medicine, Zhengzhou, Henan 450099, China;2.Heart Center of the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000,China)

Clc Number:

R5;R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [47]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The hypoxia inducible factor-1α (HIF-1α) is a major regulator of the cellular response to hypoxia, and its high expression is induced in the hypoxic environment of atherosclerosis (As) plaques. It is a key protein to promote the progression of As and widely involved in the occurrence and development of As. This article reviews the structure and function of HIF-1α and its role in endothelial cells, vascular smooth muscle cells, mononuclear macrophages and the differentiation of CD4+T cells, in order to provide new ideas for the prevention and treatment of As based on HIF-1α.

    Reference
    [1] 中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告2021概要.中国循环杂志, 2,7(6):553-578.The Writing Committee of the Report on Cardiovascular Health and Diseases in China.Report on cardiovascular health and diseases in China 2021:an updated summary.Chin Circ J, 2,7(6):553-578.
    [2] 董亚兰, 胡德胜.动脉粥样硬化的炎症应答特征及运用.中国动脉硬化杂志, 2,0(4):304-312.DONG Y L, HU D S.Characteristics and application of inflammatory response in atherosclerosis.Chin J Arterioscler, 2,0(4):304-312.
    [3] 曹钰, 牟年莲, 朱力, 等.红细胞膜仿生纳米药物载体在动脉粥样硬化治疗中的应用研究进展.中国动脉硬化杂志, 3,1(1):1-8.CAO Y, MU N L, ZHU L, et al.Research progress on the application of biomimetic nanocarriers functionalized with erythrocyte membrane for atherosclerosis therapy.Chin J Arterioscler, 3,1(1):1-8.
    [4] MATSUURA Y, MIYAWAKI K.Structures of importin-α bound to the wild-type and an internal deletion mutant of the bipartite nuclear localization signal of HIF-1α.Biochem Biophys Res Commun, 3,2:1-5.
    [5] CHU Q F, GU X Y, ZHENG Q X, et al.Regulatory mechanism of HIF-1α and its role in liver diseases:a narrative review.Ann Transl Med, 2,0(2):109.
    [6] CHEN R T, HUANG Z C, WANG J Y, et al.Silent information regulator 1 negatively regulates atherosclerotic angiogenesis via mammalian target of rapamycin complex 1 signaling pathway.Am J Med Sci, 8,6(2):168-176.
    [7] FERNNDEZ-TORRES J, MARTNEZ-NAVA G A, GUTIRREZ-RUZ M C, et al.Role of HIF-1α signaling pathway in osteoarthritis:a systematic review.Rev Bras Reumatol Engl Ed, 7,7(2):162-173.
    [8] KE Q D, COSTA M.Hypoxia-inducible factor-1 (HIF-1).Mol Pharmacol, 6,0(5):1469-1480.
    [9] WEIDEMANN A, JOHNSON R S.Biology of HIF-1alpha.Cell Death Differ, 8,5(4):621-627.
    [10] ZENG CY, WANG XF, HUA FZ.HIF-1α in osteoarthritis:from pathogenesis to therapeutic implications.Front Pharmacol, 2,3:927126.
    [11] PENG X F, GAO H, XU R, et al.The interplay between HIF-1α and noncoding RNAs in cancer.J Exp Clin Cancer Res, 0,9(1):27.
    [12] BORSI E, PERRONE G, TERRAGNA C, et al.HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment.Exp Cell Res, 4,8(2):444-455.
    [13] LISY K, PEET D J.Turn me on:regulating HIF transcriptional activity.Cell Death Differ, 8,5(4):642-649.
    [14] ZHANG Z, YAO L, YANG J H, et al.PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review).Mol Med Rep, 8,8(4):3547-3554.
    [15] AGANI F, JIANG B H.Oxygen-independent regulation of HIF-1:novel involvement of PI3K/AKT/mTOR pathway in cancer.Curr Cancer Drug Targets, 3,3(3):245-251.
    [16] WU Y, WANG J, ZHAO T, et al.Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1α/HO-1 signaling pathway in mouse testes.J Hazard Mater, 2,6:127807.
    [17] MUSSBACHER M, SCHOSSLEITNER K, KRAL-POINTNER J B, et al.More than just a monolayer:the multifaceted role of endothelial cells in the pathophysiology of atherosclerosis.Curr Atheroscler Rep, 2,4(6):483-492.
    [18] BAO M H, ZHANG Y W, LOU X Y, et al.Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries.PLoS One, 4,9(9):e106540.
    [19] CAO J, LI G, WANG M, et al.Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.Biosci Trends, 5,9(5):315-324.
    [20] HAN C Y, ZHAI L P, SHEN H P, et al.Advanced glycation end-products (AGEs) promote endothelial cell pyroptosis under cerebral ischemia and hypoxia via HIF-1α-RAGE-NLRP3.Mol Neurobiol, 3,0(5):2355-2366.
    [21] AKHTAR S, HARTMANN P, KARSHOVSKA E, et al.Endothelial hypoxia-inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a.Hypertension, 5,6(6):1220-1226.
    [22] XU J, ZHENG Y, ZHAO Y, et al.Succinate/IL-1β signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis.Front Immunol, 2,3:817572.
    [23] PARMA L, BAGANHA F, QUAX P, et al.Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis.Eur J Pharmacol, 7,6:107-115.
    [24] BAO M H, LI G Y, HUANG X S, et al.Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis.Mol Pharmacol, 8,3(4):368-375.
    [25] LV K, KONG L, YANG M, et al.An ApoA-I mimic peptide of 4F promotes SDF-1α expression in endothelial cells through PI3K/Akt/ERK/HIF-1α signaling pathway.Front Pharmacol, 2,2:760908.
    [26] LV G R, LI Y R, WANG Z H, et al.Hypoxia stimulates the proliferation of neonatal rat vascular smooth muscle cells through activation of hypoxia-inducible factor-1α.Int J Clin Exp Med, 5,8(1):496-503.
    [27] SUN Y, ZHAO J T, CHI B J, et al.Long noncoding RNA SNHG12 promotes vascular smooth muscle cell proliferation and migration via regulating miR-199a-5p/HIF-1α.Cell Biol Int, 0,4(8):1714-1726.
    [28] OSADA-OKA M, IKEDA T, IMAOKA S, et al.VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells.J Atheroscler Thromb, 8,5(1):26-33.
    [29] OSADA-OKA M, IKEDA T, AKIBA S, et al.Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1α-dependent expression of thrombospondin-1.J Cell Biochem, 8,4(5):1918-1926.
    [30] LIU D G, LEI L, DESIR M, et al.Smooth muscle hypoxia-inducible factor 1α links intravascular pressure and atherosclerosis:brief report.Arterioscler Thromb Vasc Biol, 6,6(3):442-445.
    [31] CASTELLANO J, ALEDO R, SENDRA J, et al.Hypoxia stimulates low-density lipoprotein receptor-related protein-1 expression through hypoxia-inducible factor-1α in human vascular smooth muscle cells.Arterioscler Thromb Vasc Biol, 1,1(6):1411-1420.
    [32] POITZ D M, AUGSTEIN A, GRADEHAND C, et al.Regulation of the Hif-system by micro-RNA 17 and 20a:role during monocyte-to-macrophage differentiation.Mol Immunol, 3,6(4):442-451.
    [33] HAN X, MA W, ZHU Y, et al.Advanced glycation end products enhance macrophage polarization to the M1 phenotype via the HIF-1α/PDK4 pathway.Mol Cell Endocrinol, 0,4:110878.
    [34] AARUP A, PEDERSEN T X, JUNKER N, et al.Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis.Arterioscler Thromb Vasc Biol, 6,6(9):1782-1790.
    [35] PARATHATH S, YANG Y, MICK S, et al.Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages.Trends Cardiovasc Med, 3,3(3):80-84.
    [36] NA T Y, LEE M O.27 Positive cross-talk between hypoxia inducible factor-1α and liver X receptor α induces formation of triglyceride-loaded foam cells.Atheroscler Suppl, 1,2(1):6.
    [37] SAIGUSA R, WINKELS H, LEY K.T cell subsets and functions in atherosclerosis.Nat Rev Cardiol, 0,7(7):387-401.
    [38] PANDIT M, TIMILSHINA M, CHANG J H.LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1.J Mol Med, 1,9(8):1139-1150.
    [39] MICHALEK R D, GERRIETS V A, JACOBS S R, et al.Cutting edge:distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.J Immunol, 1,6(6):3299-3303.
    [40] SHEHADE H, ACOLTY V, MOSER M, et al.Cutting edge:hypoxia-inducible factor 1 negatively regulates Th1 function.J Immunol, 5,5(4):1372-1376.
    [41] SUN L, ZHANG W, ZHAO Y, et al.Dendritic cells and T cells, partners in atherogenesis and the translating road ahead.Front Immunol, 0,1:1456.
    [42] DANG E V, BARBI J, YANG H Y, et al.Control of TH17/Treg balance by hypoxia-inducible factor 1.Cell, 1,6(5):772-784.
    [43] FELDHOFF L M, RUEDA C M, MORENO-FERNANDEZ M E, et al.IL-1β induced HIF-1α inhibits the differentiation of human FOXP3+ T cells.Sci Rep, 7,7(1):465.
    [44] ZHANG J B, JIN H, XU Y, et al.Rapamycin modulate Treg/Th17 balance via regulating metabolic pathways:a study in mice.Transplant Proc, 9,1(6):2136-2140.
    [45] GHOSH R, SAMANTA P, SARKAR R, et al.Targeting HIF-1α by natural and synthetic compounds:a promising approach for anti-cancer therapeutics development.Molecules, 2,7(16):5192.
    [46] WANG J, CHEN L Q, LI H F, et al.Clopidogrel reduces apoptosis and promotes proliferation of human vascular endothelial cells induced by palmitic acid via suppression of the long non-coding RNA HIF1A-AS1 in vitro.Mol Cell Biochem, 5,4(1/2):203-210.
    [47] BAE M K, KIM S H, JEONG J W, et al.Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1.Oncol Rep, 6,5(6):1557-1562.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YUAN Mingchuan, WANG Li, WANG He, CHEN Yushan, GUAN Huaimin. Research progress on the role of HIF-1α in atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2023,31(9):815-820.

Copy
Share
Article Metrics
  • Abstract:732
  • PDF: 1090
  • HTML: 0
  • Cited by: 0
History
  • Received:March 05,2023
  • Revised:April 20,2023
  • Online: October 19,2023
Article QR Code