Research advances in targeted therapy for heart failure
Author:
Affiliation:

1.Department of Cardiology, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, Guangxi 545006, China;2.Department of Pathophysiology, Guangxi Medical University, ;3.Key Laboratory of Human Development and Disease Research, ;4.Key Laboratory of Longevity and Aging Related Diseases, Ministry of Education, Nanning, Guangxi 530021, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [84]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    Cardiovascular disease is one of the major diseases that seriously threaten the health of Chinese residents, and the fatality rate stands first in the disease spectrum in China for a long term. With the rapid development of population aging, the prevalence and mortality of cardiovascular diseases remain on the rise, and the current treatment effect on and prognosis of heart failure are not satisfactory. It is particularly important to explore the potential pathogenic mechanisms of heart failure and identify new therapeutic targets. This article reviews the research advances in targeted therapy for heart failure in recent years, which may provide new ideas for delaying the progress of heart failure.

    Reference
    [1] Writing Committee of the Report on Cardiovascular Health and Diseases in China.Report on cardiovascular health and diseases in China 2021:an updated summary.Biomed Environ Sci, 2,5(7):573-603.
    [2] AHMAD A F, WARD N C, DWIVEDI G.The gut microbiome and heart failure.Curr Opin Cardiol, 9,4(2):225-232.
    [3] MARQUES F Z, NELSON E, CHU P Y, et al.High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice.Circulation, 7,5(10):964-977.
    [4] CARSON J A S, LICHTENSTEIN A H, ANDERSON C A M, et al.Dietary cholesterol and cardiovascular risk:a science advisory from the American Heart Association.Circulation, 0,1(3):e39-e53.
    [5] GOMEZ D F, KATSIKI N, LOPEZ M J, et al.Dietary habits, lipoprotein metabolism and cardiovascular disease:from individual foods to dietary patterns.Crit Rev Food Sci Nutr, 1,1(10):1651-1669.
    [6] MATHEW A V, SEYMOUR E M, BYUN J, et al.Altered metabolic profile with sodium-restricted dietary approaches to stop hypertension diet in hypertensive heart failure with preserved ejection fraction.J Card Fail, 5,1(12):963-967.
    [7] LIYANAGE T, NINOMIYA T, WANG A, et al.Effects of the Mediterranean diet on cardiovascular outcomes:a systematic review and Meta-analysis.PLoS One, 6,1(8):e0159252.
    [8] CHEN M L, YI L, ZHANG Y, et al.Resveratrol attenuates trimethylamine-N-oxide(TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota.MBio, 6,7(2):e02210-e02215.
    [9] ANDRAWS R, BERGER J S, BROWN D L.Effects of antibiotic therapy on outcomes of patients with coronary artery disease:a Meta-analysis of randomized controlled trials.JAMA, 5,3(21):2641-2647.
    [10] LAM V, SU J, KOPROWSKI S, et al.Intestinal microbiota determine severity of myocardial infarction in rats.FASEB J, 2,6(4):1727-1735.
    [11] HILL C, GUARNER F, REID G, et al.Expert consensus document.The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat Rev Gastroenterol Hepatol, 4,1(8):506-514.
    [12] PATEL R, DUPONT H L.New approaches for bacteriotherapy:prebiotics, new-generation probiotics, and synbiotics.Clin Infect Dis, 5,0(Suppl 2):S108-S121.
    [13] LAM V, SU J D, HSU A, et al.Intestinal microbial metabolites are linked to severity of myocardial infarction in rats.PLoS One, 6,1(8):e0160840.
    [14] GAN X T, ETTINGER G, HUANG C X, et al.Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat.Circ Heart Fail, 4,7(3):491-499.
    [15] KOOTTE R S, LEVIN E, SALOJRVI J, et al.Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition.Cell Metab, 7,6(4):611-619.e6.
    [16] VRIEZE A, VAN NOOD E, HOLLEMAN F, et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.Gastroenterology, 2,3(4):913-916.e7.
    [17] SANNA S R A, VAN ZUYDAM N R, MAHAJAN A, et al.Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases.Nat Genet, 9,1(4):600-605.
    [18] HANNA A, FRANGOGIANNIS N G.Inflammatory cytokines and chemokines as therapeutic targets in heart failure.Cardiovasc Drugs Ther, 0,4(6):849-863.
    [19] KAPADIA S, LEE J, TORRE-AMIONE G, et al.Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration.J Clin Invest, 5,6(2):1042-1052.
    [20] SCHUMACHER S M, NAGA PRASAD S V.Tumor necrosis factor-alpha in heart failure:an updated review.Curr Cardiol Rep, 8,0(11):117.
    [21] NEMEC SVETE A, VERK B, CˇEBULJ-KADUNC N, et al.Inflammation and its association with oxidative stress in dogs with heart failure.BMC Vet Res, 1,7(1):176.
    [22] CHEN H K, SHAO S C, WENG M Y, et al.Risk of heart failure in rheumatoid arthritis patients treated with tumor necrosis factor-α inhibitors.Clin Pharmacol Ther, 1,0(6):1595-1603.
    [23] CHUNG E S, PACKER M, LO K H, et al.Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure:results of the anti-TNF therapy against congestive heart failure (ATTACH) trial.Circulation, 3,7(25):3133-3140.
    [24] RIDKER P M, EVERETT B M, THUREN T, et al.Antiinflammatory therapy with canakinumab for atherosclerotic disease.N Engl J Med, 7,7(12):1119-1131.
    [25] EVERETT B M, CORNEL J H, LAINSCAK M, et al.Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure.Circulation, 9,9(10):1289-1299.
    [26] YOKOE I, KOBAYASHI H, KOBAYASHI Y, et al.Impact of tocilizumab on N-terminal pro-brain natriuretic peptide levels in patients with active rheumatoid arthritis without cardiac symptoms.Scand J Rheumatol, 8,7(5):364-370.
    [27] KLEVELAND O, KUNSZT G, BRATLIE M, et al.Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction:a double-blind, randomized, placebo-controlled phase 2 trial.Eur Heart J, 6,7(30):2406-2413.
    [28] KLEVELAND O, UELAND T, KUNSZT G, et al.Interleukin-6 receptor inhibition with tocilizumab induces a selective and substantial increase in plasma IP-10 and MIP-1β in non-ST-elevation myocardial infarction.Int J Cardiol, 8,1:1-7.
    [29] HUGHES C E, NIBBS R J B.A guide to chemokines and their receptors.FEBS J, 8,5(16):2944-2971.
    [30] CHEN B J, FRANGOGIANNIS N G.Chemokines in myocardial infarction.J Cardiovasc Transl Res, 1,4(1):35-52.
    [31] XIA Y, FRANGOGIANNIS N G.MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy.Inflamm Allergy Drug Targets, 7,6(2):101-107.
    [32] BLANCO-COLIO L M, MENDEZ-BARBERO N, PELLO LAZARO A M, et al.MCP-1 predicts recurrent cardiovascular events in patients with persistent inflammation.J Clin Med, 1,0(5):1137.
    [33] HOHENSINNER P J, RYCHLI K, ZORN G, et al.Macrophage-modulating cytokines predict adverse outcome in heart failure.Thromb Haemost, 0,3(2):435-441.
    [34] WANG J L, SEO M J, DECI M B, et al.Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction.Int J Nanomedicine, 8,3:6441-6451.
    [35] LU W B, XIE Z Y, TANG Y, et al.Photoluminescent mesoporous silicon nanoparticles with siCCR2 improve the effects of mesenchymal stromal cell transplantation after acute myocardial infarction.Theranostics, 5,5(10):1068-1082.
    [36] PRABHU S D, FRANGOGIANNIS N G.The biological basis for cardiac repair after myocardial infarction:from inflammation to fibrosis.Circ Res, 6,9(1):91-112.
    [37] ZHANG W, ZHU T B, CHEN L L, et al.MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR.Am J Physiol Heart Circ Physiol, 0,8(1):H59-H71.
    [38] RAMACHANDRAN I, THAVATHIRU E, RAMALINGAM S, et al.Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo.Oncogene, 2,1(22):2725-2737.
    [39] ABPLANALP W T, JOHN D, CREMER S, et al.Single-cell RNA-sequencing reveals profound changes in circulating immune cells in patients with heart failure.Cardiovasc Res, 1,7(2):484-494.
    [40] MALEKAR P, HAGENMUELLER M, ANYANWU A, et al.Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling.Hypertension, 0,5(4):939-945.
    [41] METHATHAM T, TOMIDA S, KIMURA N, et al.Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis.Sci Rep, 1,1(1):14886.
    [42] LIAO H W, LI X, ZHAO L Z, et al.A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer.Cell Discov, 0,6:35.
    [43] SAHA S, PANIGRAHI D P, PATIL S, et al.Autophagy in health and disease:a comprehensive review.Biomed Pharmacother, 8,4:485-495.
    [44] HALL A R, BURKE N, DONGWORTH R K, et al.Mitochondrial fusion and fission proteins:novel therapeutic targets for combating cardiovascular disease.Br J Pharmacol, 4,1(8):1890-1906.
    [45] LEMASTERS J J.Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging.Rejuvenation Res, 5,8(1):3-5.
    [46] SONG M S, CHEN Y, GONG G H, et al.Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy.Circ Res, 4,5(3):348-353.
    [47] CHEN G, KROEMER G, KEPP O.Mitophagy:an emerging role in aging and age-associated diseases.Front Cell Dev Biol, 0,8:200.
    [48] ABUDUREYIMU M Y S, YU W J, CAO R Y, et al.Berberine promotes cardiac function by upregulating PINK1/Parkin-mediated mitophagy in heart failure.Front Physiol, 0,1:565751.
    [49] XIONG W J, HUA J H, LIU Z H, et al.PTEN induced putative kinase 1 (PINK1) alleviates angiotensinⅡ-induced cardiac injury by ameliorating mitochondrial dysfunction.Int J Cardiol, 8,6:198-205.
    [50] WANG B, NIE J L, WU L J, et al.AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation.Circ Res, 8,2(5):712-729.
    [51] SIMPSON L J, ANSEL K M.MicroRNA regulation of lymphocyte tolerance and autoimmunity.J Clin Invest, 5,5(6):2242-2249.
    [52] LI G Q, SHAO Y H, GUO H C, et al.MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling.Cardiovasc Res, 2,8(9):2139-2151.
    [53] TUBEL J, HAUKE W, RUMP S, et al.Novel antisense therapy targeting microRNA-132 in patients with heart failure:results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study.Eur Heart J, 1,2(2):178-188.
    [54] SHEN N N, WANG J L, FU Y P.The microRNA expression profiling in heart failure:a systematic review and Meta-analysis.Front Cardiovasc Med, 2,9:856358.
    [55] GHOLAMINEJAD A, ZARE N, DANA N, et al.A meta-analysis of microRNA expression profiling studies in heart failure.Heart Fail Rev, 1,6(4):997-1021.
    [56] RONCARATI R, VIVIANI ANSELMI C, LOSI M A, et al.Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy.J Am Coll Cardiol, 4,3(9):920-927.
    [57] QIANG L, HONG L, NINGFU W, et al.Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients.Int J Cardiol, 3,8(3):2082-2088.
    [58] OVCHINNIKOVA E S, SCHMITTER D, VEGTER E L, et al.Signature of circulating microRNAs in patients with acute heart failure.Eur J Heart Fail, 6,8(4):414-423.
    [59] YANG J, YANG X S, FAN S W, et al.Prognostic value of microRNAs in heart failure:a Meta-analysis.Medicine (Baltimore), 1,0(46):e27744.
    [60] Dickinson B A, Semus H M, Montgomery R L, et al.Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure.Eur J Heart Fail, 3,5(6):650-659.
    [61] NIE X, FAN J, LI H, et al.miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN.Mol Ther Nucleic Acids, 8,2:254-266.
    [62] DEVAUX Y, ZANGRANDO J, SCHROEN B, et al.Long noncoding RNAs in cardiac development and ageing.Nat Rev Cardiol, 5,2(7):415-425.
    [63] LIU L T, AN X B, LI Z H, et al.The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy.Cardiovasc Res, 6,1(1):56-65.
    [64] GRECO S, ZACCAGNINI G, PERFETTI A, et al.Long noncoding RNA dysregulation in ischemic heart failure.J Transl Med, 6,4(1):183.
    [65] HAN P, LI W, LIN C H, et al.A long noncoding RNA protects the heart from pathological hypertrophy.Nature, 4,4(7520):102-106.
    [66] SCHULTE C, BARWARI T, JOSHI A, et al.Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury.Circ Res, 9,5(3):328-340.
    [67] BERULAVA T, BUCHHOLZ E, ELERDASHVILI V, et al.Changes in m6A RNA methylation contribute to heart failure progression by modulating translation.Eur J Heart Fail, 0,2(1):54-66.
    [68] DORN L E, LASMAN L, CHEN J, et al.The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy.Circulation, 9,9(4):533-545.
    [69] MATHIYALAGAN P, ADAMIAK M, MAYOURIAN J, et al.FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair.Circulation, 9,9(4):518-532.
    [70] ECHEVERRA-RODRGUEZ O, DELVALLE-MONDRAGN L, HONG E R U.Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.Peptides, 4,1:26-30.
    [71] MILLER A J, ARNOLD A C.The renin-angiotensin system in cardiovascular autonomic control:recent developments and clinical implications.Clin Auton Res, 9,9(2):231-243.
    [72] TWARDA-CLAPA A, OLCZAK A, BIAKOWSKA A M, et al.Advanced glycation end-products (AGEs):formation, chemistry, classification, receptors, and diseases related to AGEs.Cells, 2,1(8):1312.
    [73] TAMANNA N, MAHMOOD N.Food processing and maillard reaction products:effect on human health and nutrition.Int J Food Sci, 5,5:526762.
    [74] LI L, HAO J H, JIANG X, et al.Cardioprotective effects of ulinastatin against isoproterenol-induced chronic heart failure through the PI3K-Akt, p38 MAPK and NF-κB pathways.Mol Med Rep, 8,7(1):1354-1360.
    [75] GAO W B, ZHOU Z, LIANG B R, et al.Inhibiting receptor of advanced glycation end products attenuates pressure overload-induced cardiac dysfunction by preventing excessive autophagy.Front Physiol, 8,9:1333.
    [76] O'BRIEN J, MORRISSEY P A.Nutritional and toxicological aspects of the Maillard browning reaction in foods.Crit Rev Food Sci Nutr, 9,8(3):211-248.
    [77] TOPRAK C, SIRMAGUL B, YIGITASLAN S.Functional effects of alagebrium (ALT-711)-isolated rat carotid artery.Eur J Med, 7,9(3):188-192.
    [78] TSUTSUI H.Recent advances in the pharmacological therapy of chronic heart failure:evidence and guidelines.Pharmacol Ther, 2,8:108185.
    [79] LIN H, PARMACEK M S, MORLE G, et al.Expression of recombinant genes in myocardium in vivo after direct injection of DNA.Circulation, 0,2(6):2217-2221.
    [80] GREENBERG B, BUTLER J, FELKER G M, et al.Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2):a randomised, multinational, double-blind, placebo-controlled, phase 2b trial.Lancet, 6,7(10024):1178-1186.
    [81] GREENBERG B, YAROSHINSKY A, ZSEBO K M, et al.Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure:the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b).JACC Heart Fail, 4,2(1):84-92.
    [82] SLECZKA B G, LEVESQUE P C, ADAM L P, et al.LC/MS/MS-based quantitation of pig and human S100A1 protein in cardiac tissues:application to gene therapy.Anal Biochem, 0,2:113766.
    [83] KORPELA H, JARVELAINEN N, SIIMES S, et al.Gene therapy for ischaemic heart disease and heart failure.J Intern Med, 1,0(3):567-582.
    [84] 马宗宾, 赵永辉, 刘倩玲.心房颤动合并心力衰竭的治疗进展.中国动脉硬化杂志, 2,0(6):535-540.MA Z B, ZHAO Y H, LIU Q L.Progress in treatment of atrial fibrillation complicated with heart failure.Chin J Arterioscler, 2,0(6):535-540.
    Related
    Cited by
Get Citation

MIAO Liu, HUANG Zhenqi, CHEN Ningyuan. Research advances in targeted therapy for heart failure[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2023,31(6):517-526.

Copy
Share
Article Metrics
  • Abstract:792
  • PDF: 1321
  • HTML: 0
  • Cited by: 0
History
  • Received:November 08,2022
  • Revised:December 11,2022
  • Online: June 12,2023
Article QR Code