Vascular wall stem cells and vascular remodeling-related diseases
Author:
Affiliation:

Department of Physiology and Pathophysiology, School of Basic Medicine, Capital Medical University & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China)

Clc Number:

R543

  • Article
  • | |
  • Metrics
  • |
  • Reference [96]
  • | | | |
  • Comments
    Abstract:

    Vascular remodeling is the pathophysiological basis of many cardiovascular diseases such as atherosclerosis, and various cells in the blood vessel wall play an important role in this process. Among them, vascular wall stem cells, as a type of adult stem cells that exist in the vascular wall, not only participate in angiogenesis during the growth and development of the body and early adulthood, but also can be affected by pathogenic factors in adulthood, activate from dormant state, differentiate into endothelial cells and smooth muscle cells, participate in vascular remodeling after vascular injury, and affect the process of related diseases. This paper reviews the latest progress of vascular wall stem cells in vascular remodeling-related diseases, so as to provide a basis for further demonstrating the possible therapeutic potential of vascular wall stem cells.

    Reference
    [1] SU S A, XIE Y, FU Z, et al.Emerging role of exosome-mediated intercellular communication in vascular remodeling.Oncotarget, 7,8(15):25700-25712.
    [2] MA Z, MAO C, JIA Y, et al.Extracellular matrix dynamics in vascular remodeling.Am J Physiol Cell Physiol, 0,9(3):C481-C499.
    [3] HEENEMAN S, SLUIMER J C, DAEMEN M J A P.Angiotensin-converting enzyme and vascular remodeling.Circ Res, 7,1(5):441-454.
    [4] CHAN S, YAN C.Pde1 isozymes, key regulators of pathological vascular remodeling.Curr Opin Pharmacol, 1,1(6):720-724.
    [5] ZHANG L, ISSA BHALOO S, CHEN T, et al.Role of resident stem cells in vessel formation and arteriosclerosis.Circ Res, 8,2(11):1608-1624.
    [6] BACAKOVA L, ZARUBOVA J, TRAVNICKOVA M, et al.Stem cells:their source, potency and use in regenerative therapies with focus on adipose-derived stem cells-a review.Biotechnol Adv, 8,6(4):1111-1126.
    [7] KOLIOS G, MOODLEY Y.Introduction to stem cells and regenerative medicine.Respiration, 3,5(1):3-10.
    [8] VOLAREVIC V, MARKOVIC B S, GAZDIC M, et al.Ethical and safety issues of stem cell-based therapy.Int J Med Sci, 8,5(1):36-45.
    [9] KRAWIEC J T, VORP D A.Adult stem cell-based tissue engineered blood vessels:a review.Biomaterials, 2,3(12):3388-3400.
    [10] ROGERS E H, HUNT J A, PEKOVIC-VAUGHAN V.Adult stem cell maintenance and tissue regeneration around the clock:do impaired stem cell clocks drive age-associated tissue degeneration?.Biogerontology, 8,9(6):497-517.
    [11] SUN R, HUANG J, SUN B.Mobilization of endothelial progenitor cells in sepsis.Inflamm Res, 0,9(1):1-9.
    [12] FANG B, LUO S, SONG Y, et al.Hemangioblastic characteristics of human adipose tissue-derived adult stem cells in vivo.Arch Med Res, 9,0(4):311-317.
    [13] CHEN Q, YANG M, WU H, et al.Genetic lineage tracing analysis of c-Kit stem/progenitor cells revealed a contribution to vascular injury-induced neointimal lesions.J Mol Cell Cardiol, 8,1(3):277-286.
    [14] BOBRYSHEV Y V, OREKHOV A N, CHISTIAKOV D A.Vascular stem/progenitor cells:current status of the problem.Cell Tissue Res, 5,2(1):1-7.
    [15] MEDINA R, BARBER C, SABATIER F, et al.Endothelial progenitors:a consensus statement on nomenclature.Stem Cells Transl Med, 7,6(5):1316-1320.
    [16] BIANCONI V, SAHEBKAR A, KOVANEN P, et al.Endothelial and cardiac progenitor cells for cardiovascular repair:a controversial paradigm in cell therapy.Pharmacol Ther, 8,1(1):156-168.
    [17] YANG J X, PAN Y Y, WANG X X, et al.Endothelial progenitor cells in age-related vascular remodeling.Cell Transplant, 8,7(5):786-795.
    [18] PSALTIS P J, SIMARI R D.Vascular wall progenitor cells in health and disease.Circ Res, 5,6(8):1392-1412.
    [19] LIN R Z, MORENO-LUNA R, LI D, et al.Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling.Proc Natl Acad Sci USA, 4,1(28):10137-10142.
    [20] TANG J, WANG H, HUANG X, et al.Arterial sca1 vascular stem cells generate de novo smooth muscle for artery repair and regeneration.Cell Stem Cell, 0,6(1):81-96.
    [21] SHIKATANI E, CHANDY M, BESLA R, et al.C-Myb regulates proliferation and differentiation of adventitial Sca1+ vascular smooth muscle cell progenitors by transactivation of myocardin.Arterioscler Thromb Vasc Biol, 6,6(7):1367-1376.
    [22] HUANG C W, HSUEH Y Y, HUANG W C, et al.Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve.Stem Cell Res Ther, 9,0(1):234-242.
    [23] TANG Z, WANG A, YUAN F, et al.Differentiation of multipotent vascular stem cells contributes to vascular diseases.Nat Commun, 2,3:875.
    [24] WNOROWSKI A, YANG H, WU J C.Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models.Adv Drug Deliv Rev, 9,0:3-11.
    [25] LIN H, SOHN J, SHEN H, et al.Bone marrow mesenchymal stem cells:aging and tissue engineering applications to enhance bone healing.Biomaterials, 9,3(5):96-110.
    [26] JI K, DING L, CHEN X, et al.Mesenchymal stem cells differentiation:mitochondria matter in osteogenesis or adipogenesis direction.Curr Stem Cell Res Ther, 0,5(7):602-606.
    [27] DING D C, CHANG Y H, SHYU W C, et al.Human umbilical cord mesenchymal stem cells:a new era for stem cell therapy.Cell Transplant, 5,4(3):339-347.
    [28] PALENCAR D, DRAGUNOVA J, HULIN I, et al.Adipose derived mesenchymal stem cells harvesting.Bratisl Lek Listy, 9,0(9):686-689.
    [29] SHARPE P T.Dental mesenchymal stem cells.Development, 6,3(13):2273-2280.
    [30] BAJPAI V K, MISTRIOTIS P, ANDREADIS S T.Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells.Stem Cell Res, 2,8(1):74-84.
    [31] RYU K H, CHO K A, PARK H S, et al.Tonsil-derived mesenchymal stromal cells:evaluation of biologic, immunologic and genetic factors for successful banking.Cytotherapy, 2,4(10):1193-1202.
    [32] AL-NBAHEEN M, VISHNUBALAJI R, ALI D, et al.Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential.Stem Cell Rev Rep, 3,9(1):32-43.
    [33] MELCHIORRI A J, NGUYEN B N B, FISHER J P.Mesenchymal stem cells:roles and relationships in vascularization.Tissue Eng Part B Rev, 4,0(3):218-228.
    [34] LU W, LI X.Vascular stem/progenitor cells:functions and signaling pathways.Cell Mol Life Sci, 8,5(5):859-869.
    [35] GONG M, YU B, WANG J, et al.Mesenchymal stem cells release exosomes that transfer mirnas to endothelial cells and promote angiogenesis.Oncotarget, 7,8(28):45200-45212.
    [36] GU W, HONG X, POTTER C, et al.Mesenchymal stem cells and vascular regeneration.Microcirculation, 7,4(1):e12324-e12338.
    [37] CHANG H K, KIM P H, KIM D W, et al.Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model.Exp Mol Med, 8,0(9):1-14.
    [38] FERLAND-MCCOLLOUGH D, SLATER S, RICHARD J, et al.Pericytes, an overlooked player in vascular pathobiology.Pharmacol Ther, 7,1(5):30-42.
    [39] LIN C S, LUE T F.Defining vascular stem cells.Stem Cells Dev, 3,2(7):1018-1026.
    [40] GUIMARES-CAMBOA N, CATTANEO P, SUN Y, et al.Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo.Cell Stem Cell, 7,0(3):345-359.
    [41] PATEL J, SEPPANEN E J, RODERO M P, et al.Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process.Circulation, 7,5(8):786-805.
    [42] LI X, CHEN C, WEI L, et al.Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function.Cytotherapy, 6,8(2):253-262.
    [43] MUND J A, ESTES M L, YODER M C, et al.Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells.Arterioscler Thromb Vasc Biol, 2,2(4):1045-1053.
    [44] MALINVERNO M, CORADA M, FERRARINI L, et al.Peg3/PW1 is a marker of a subset of vessel associated endothelial progenitors.Stem Cells, 7,5(5):1328-1340.
    [45] BEARZI C, LERI A, LO MONACO F, et al.Identification of a coronary vascular progenitor cell in the human heart.Proc Natl Acad Sci USA, 9,6(37):15885-15890.
    [46] ZENGIN E, CHALAJOUR F, GEHLING U M, et al.Vascular wall resident progenitor cells:a source for postnatal vasculogenesis.Development, 6,3(8):1543-1551.
    [47] SUNG S H, WU T C, CHEN J S, et al.Reduced number and impaired function of circulating endothelial progenitor cells in patients with abdominal aortic aneurysm.Int J Cardiol, 3,8(2):1070-1077.
    [48] TOSHNER M, VOSWINCKEL R, SOUTHWOOD M, et al.Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension.Am J Respir Crit Care Med, 9,0(8):780-787.
    [49] DIERICK F, HéRY T, HOAREAU-COUDERT B, et al.Resident PW1+ progenitor cells participate in vascular remodeling during pulmonary arterial hypertension.Circ Res, 6,8(5):822-833.
    [50] ZORZI P, APLIN A C, SMITH K D, et al.Technical advance:the rat aorta contains resident mononuclear phagocytes with proliferative capacity and proangiogenic properties.J Leukoc Biol, 0,8(5):1051-1059.
    [51] GUIMARES-CAMBOA N, EVANS S M.Are perivascular adipocyte progenitors mural cells or adventitial fibroblasts?.Cell Stem Cell, 7,0(5):587-589.
    [52] HUGHES S, GARDINER T, HU P, et al.Altered pericyte-endothelial relations in the rat retina during aging:implications for vessel stability.Neurobiol Aging, 6,7(12):1838-1847.
    [53] GIMBRONE M A, GARCA-CARDEA G.Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ Res, 6,8(4):620-636.
    [54] BAEYENS N, BANDYOPADHYAY C, COON B G, et al.Endothelial fluid shear stress sensing in vascular health and disease.J Clin Invest, 6,6(3):821-828.
    [55] WOLF D, LEY K.Immunity and inflammation in atherosclerosis.Circ Res, 9,4(2):315-327.
    [56] WANG D, UHRIN P, MOCAN A, et al.Vascular smooth muscle cell proliferation as a therapeutic target.Part 1:molecular targets and pathways.Biotechnol Adv, 8,6(6):1586-1607.
    [57] ALLAHVERDIAN S, CHAABANE C, BOUKAIS K, et al.Smooth muscle cell fate and plasticity in atherosclerosis.Cardiovasc Res, 8,4(4):540-550.
    [58] YU B, CHEN Q, LE BRAS A, et al.Vascular stem/progenitor cell migration and differentiation in atherosclerosis.Antioxid Redox Signal, 8,9(2):219-235.
    [59] CHEN Y, WONG M, CAMPAGNOLO P, et al.Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation.Arterioscler Thromb Vasc Biol, 3,3(8):1844-1851.
    [60] NI Z, DENG J, POTTER C M F, et al.Recipient c-Kit lineage cells repopulate smooth muscle cells of transplant arteriosclerosis in mouse models.Circ Res, 9,5(2):223-241.
    [61] KARAMARITI E, ZHAI C, YU B, et al.DKK3 (dickkopf 3) alters atherosclerotic plaque phenotype involving vascular progenitor and fibroblast differentiation into smooth muscle cells.Arterioscler Thromb Vasc Biol, 8,8(2):425-437.
    [62] LESZCZYNSKA A, O'DOHERTY A, FARRELL E, et al.Differentiation of vascular stem cells contributes to ectopic calcification of atherosclerotic plaque.Stem Cells, 6,4(4):913-923.
    [63] KOKKINOPOULOS I, WONG M M, POTTER C M F, et al.Adventitial Sca-1+ progenitor cell gene sequencing reveals the mechanisms of cell migration in response to hyperlipidemia.Stem Cell Reports, 7,9(2):681-696.
    [64] WANG H, ZHAO H, ZHU H, et al.Sca1 cells minimally contribute to smooth muscle cells in atherosclerosis.Circ Res, 1,8(1):133-135.
    [65] CHEN W, HSU W, YEN M, et al.Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization.Biomaterials, 9,0(1):1-10.
    [66] MEHTA S R, WOOD D A, STOREY R F, et al.Complete revascularization with multivessel PCI for myocardial infarction.N Engl J Med, 9,1(15):1411-1421.
    [67] GIANNINI F, CANDILIO L, MITOMO S, et al.A practical approach to the management of complications during percutaneous coronary intervention.JACC Cardiovasc Interv, 8,1(18):1797-1810.
    [68] JUKEMA J W, AHMED T A N, VERSCHUREN J J W, et al.Restenosis after PCI.Part 2:prevention and therapy.Nat Rev Cardiol, 1,9(2):79-90.
    [69] JUKEMA J W, VERSCHUREN J J W, AHMED T A N, et al.Restenosis after PCI.Part 1:pathophysiology and risk factors.Nat Rev Cardiol, 1,9(1):53-62.
    [70] AGEMA W R, JUKEMA J W, PIMSTONE S N, et al.Genetic aspects of restenosis after percutaneous coronary interventions:towards more tailored therapy.Eur Heart J, 1,2(22):2058-2074.
    [71] WELT F G P, ROGERS C.Inflammation and restenosis in the stent era.Arterioscler Thromb Vasc Biol, 2,2(11):1769-1776.
    [72] POTTER C M F, LAO K H, ZENG L, et al.Role of biomechanical forces in stem cell vascular lineage differentiation.Arterioscler Thromb Vasc Biol, 4,4(10):2184-2190.
    [73] YU B, WONG M, POTTER C, et al.Vascular stem/progenitor cell migration induced by smooth muscle cell-derived chemokine (C-C motif) ligand 2 and chemokine (C-X-C motif) ligand 1 contributes to neointima formation.Stem Cells, 6,4(9):2368-2380.
    [74] XIE Y, POTTER C, LE BRAS A, et al.Leptin induces Sca-1 progenitor cell migration enhancing neointimal lesions in vessel-injury mouse models.Arterioscler Thromb Vasc Biol, 7,7(11):2114-2127.
    [75] JIANG L, CHEN T, SUN S, et al.Nonbone marrow CD34 cells are crucial for endothelial repair of injured artery.Circ Res, 1,9(8):e146-e165.
    [76] TAKAGI H, ANDO T, UMEMOTO T.Drug-eluting stents versus coronary artery bypass grafting for left-main coronary artery disease.Catheter Cardiovasc Interv, 8,1(4):697-709.
    [77] ARSALAN M, MACK M J.Coronary artery bypass grafting is currently underutilized.Circulation, 6,3(10):1036-1045.
    [78] FORTIER J H, FERRARI G, GLINEUR D, et al.Implications of coronary artery bypass grafting and percutaneous coronary intervention on disease progression and the resulting changes to the physiology and pathology of the native coronary arteries.Eur J Cardiothorac Surg, 8,4(5):809-816.
    [79] ROOSTALU U, ALDEIRI B, ALBERTINI A, et al.Distinct cellular mechanisms underlie smooth muscle turnover in vascular development and repair.Circ Res, 8,2(2):267-281.
    [80] KONUKOGLU D, UZUN H.Endothelial dysfunction and hypertension.Adv Exp Med Biol, 7,6:511-540.
    [81] DRUMMOND G R, VINH A, GUZIK T J, et al.Immune mechanisms of hypertension.Nat Rev Immunol, 9,9(8):517-532.
    [82] ARENDSE L B, DANSER A H J, POGLITSCH M, et al.Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure.Pharmacol Rev, 9,1(4):539-570.
    [83] DINH Q N, DRUMMOND G R, SOBEY C G, et al.Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension.Biomed Res Int, 4,4:406960-406971.
    [84] WU J, MONTANIEL K, SALEH M, et al.Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension.Hypertension, 6,7(2):461-468.
    [85] MAJESKY M, HORITA H, OSTRIKER A, et al.Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4.Circ Res, 7,0(2):296-311.
    [86] JANA S, HU M, SHEN M, et al.Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm.Exp Mol Med, 9,1(12):1-15.
    [87] NIENABER C A, CLOUGH R E, SAKALIHASAN N, et al.Aortic dissection.Nat Rev Dis Primers, 6,2:16053.
    [88] LU H, DAUGHERTY A.Aortic aneurysms.Arterioscler Thromb Vasc Biol, 7,7(6):e59-e65.
    [89] QUINTANA R A, TAYLOR W R.Cellular mechanisms of aortic aneurysm formation.Circ Res, 9,4(4):607-618.
    [90] PINARD A, JONES G T, MILEWICZ D M.Genetics of thoracic and abdominal aortic diseases.Circ Res, 9,4(4):588-606.
    [91] FLETCHER A J, SYED M B J, AITMAN T J, et al.Inherited thoracic aortic disease:new insights and translational targets.Circulation, 0,1(19):1570-1587.
    [92] CHEN P, QIN L, LI G, et al.Smooth muscle cell reprogramming in aortic aneurysms.Cell Stem Cell, 0,6(4):542-557.
    [93] CHEN F, ZHANG Z, ZHU X.Inhibition of development of experimental abdominal aortic aneurysm by c-Jun N-terminal protein kinase inhibitor combined with lysyl oxidase gene modified smooth muscle progenitor cells.Eur J Pharmacol, 5,6(22):114-121.
    [94] ZOU S, REN P, ZHANG L, et al.Activation of bone marrow-derived cells and resident aortic cells during aortic injury.J Surg Res, 0,5(1):1-12.
    [95] PATSCH C, CHALLET-MEYLAN L, THOMA E C, et al.Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.Nat Cell Biol, 5,7(8):994-1003.
    [96] SONG H H G, RUMMA R T, OZAKI C K, et al.Vascular tissue engineering:progress, challenges, and clinical promise.Cell Stem Cell, 8,2(3):340-354.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CAO Xuejie, TAO Jiaping, QU Aijuan, YU Baoqi. Vascular wall stem cells and vascular remodeling-related diseases[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2022,30(11):921-929.

Copy
Share
Article Metrics
  • Abstract:949
  • PDF: 994
  • HTML: 0
  • Cited by: 0
History
  • Received:October 13,2021
  • Revised:December 07,2021
  • Online: November 07,2022
Article QR Code