Research progress of fluorescence imaging in atherosclerosis
Author:
Affiliation:

1.School of Pharmaceutical Science,Hengyang, Hunan 421001, China ;2.Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China;3.Clinical Research Institute, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [59]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Atherosclerosis (As) is one of the important factors leading to high mortality and disability rate of cardiovascular and cerebrovascular diseases. Since its pathogenesis and heterogeneity distribution are still not clear, the “early detection, diagnosis and treatment” of As in vivo remains a great challenge. Fluorescence imaging is widely used in basic and clinical medical fields such as disease pathogenesis research, drug efficacy evaluation, and surgical navigation, because of its unique advantages such as sensitivity, noninvasive, high spatial and temporal resolution and real-time in situ, especially near-infrared fluorescence imaging with lower background interference and deeper tissue penetration, and it provides a new opportunity for the detection and treatment of the development and progression of As. Fluorescence imaging has attracted more and more attention in the research of As. This paper reviews the new progress of fluorescence imaging technology in the study of As.

    Reference
    [1] SONG P, FANG Z, WANG H, et al.Global and regional prevalence, burden, and risk factors for carotid atherosclerosis:a systematic review, Meta-analysis, and modelling study.Lancet Glob Health, 0,8(5):e721-e729.
    [2] WUOPIO J, HILDEN J, BRING C, et al.Cathepsin B and S as markers for cardiovascular risk and all-cause mortality in patients with stable coronary heart disease during 10 years:a CLARICOR trial sub-study.Atherosclerosis, 8,8:97-102.
    [3] OLEJARZ W, BACHETA D, KUBIAK-TOMASZEWSKA G.Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability.Int J Mol Sci, 0,1(11):3946.
    [4] AFONSO C B, SPICKETT C M.Lipoproteins as targets and markers of lipoxidation.Redox Biol, 9,3:101066.
    [5] ZHANG S, LI L, CHEN W, et al.Natural products:the role and mechanism in low-density lipoprotein oxidation and atherosclerosis.Phytother Res, 1,5(6):2945-2967.
    [6] DWECK M R, AIKAWA E, NEWBY D E, et al.Noninvasive molecular imaging of disease activity in atherosclerosis.Circ Res, 6,9(2):330-340.
    [7] OCHOA C D, WU R F, TERADA L S.ROS signaling and ER stress in cardiovascular disease.Mol Aspects Med, 8,3:18-29.
    [8] ZHU J, LIU B, WANG Z, et al.Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation.Theranostics, 9,9(23):6901-6919.
    [9] SUTTON N R, BOUIS D, MANN K M, et al.CD73 promotes age-dependent accretion of atherosclerosis.Arterioscler Thromb Vasc Biol, 0,0(1):61-71.
    [10] TRPKOVIC A, RESANOVIC I, STANIMIROVIC J, et al.Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases.Crit Rev Clin Lab Sci, 5,2(2):70-85.
    [11] PACKARD R, LUO Y, ABIRI P, et al.3-D electrochemical impedance spectroscopy mapping of arteries to detect metabolically active but angiographically invisible atherosclerotic lesions.Theranostics, 7,7(9):2431-2442.
    [12] HIROWATARI Y, YOSHIDA H.Innovatively established analysis method for lipoprotein profiles based on high-performance anion-exchange liquid chromatography.J Atheroscler Thromb, 9,6(12):1027-1040.
    [13] MANNES P Z, TAVAKOLI S.Imaging immunometabolism in atherosclerosis.J Nucl Med, 1,2(7):896-902.
    [14] CALCAGNO C, PREZ-MEDINA C, MULDER W J M, et al.Whole-body atherosclerosis imaging by positron emission tomography/magnetic resonance imaging.Arterioscler Thromb Vasc Biol, 0,0(5):1123-1134.
    [15] PIRI R, GERKE O, HILUND-CARLSEN P F.Molecular imaging of carotid artery atherosclerosis with PET:a systematic review.Eur J Nucl Med Mol Imaging, 0,7(8):2016-2025.
    [16] WST R C I, CALCAGNO C, DAAL M R R, et al.Emerging magnetic resonance imaging techniques for atherosclerosis imaging.Arterioscler Thromb Vasc Biol, 9,9(5):841-849.
    [17] LI Z, TANG H, TU Y.Molecular and nonmolecular imaging of macrophages in atherosclerosis.Front Cardiovasc Med, 1,8:670639.
    [18] ISKANDER-RIZK S, WU M, SPRINGELING G, et al.In vivo intravascular photoacoustic imaging of plaque lipid in coronary atherosclerosis.EuroIntervention, 9,5(5):452-456.
    [19] XIE Z, YANG Y, HE Y, et al.In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging.Theranostics, 0,0(10):4694-4704.
    [20] CORDOVA R, KIEKENS K, BURRELL S, et al.Sub-millimeter endoscope demonstrates feasibility of in vivo reflectance imaging, fluorescence imaging, and cell collection in the fallopian tubes.J Biomed Opt, 1,6(7):076001.
    [21] SHIBUTANI H, FUJII K, KAWAKAMI R, et al.Tangential signal dropout artefact in optical frequency domain imaging.EuroIntervention, 1,7(4):e326-e331.
    [22] SWEER J A, CHEN M T, SALIMIAN K J, et al.Wide-field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging.J Biophotonics, 9,2(9):e201900005.
    [23] CHENG J, ZHANG P, CAI C, et al.Depth-recognizable time-domain fluorescence molecular tomography in reflective geometry.Biomed Opt Express, 1,2(7):3806-3818.
    [24] LIAN L, DENG Y, XIE W, et al.High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences.Opt Express, 6,4(17):19920-19933.
    [25] WU J, LIANG Y, CHEN S, et al.Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.Nat Methods, 0,7(3):287-290.
    [26] FAN J L, RIVERA J A, SUN W, et al.High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics.Nat Commun, 0,1(1):6020.
    [27] ZHAO M, LI B, ZHANG H, et al.Activatable fluorescence sensors forin vivo bio-detection in the second near-infrared window.Chem Sci, 1,2(10):3448-3459.
    [28] LI C, CHEN G, ZHANG Y, et al.Advanced fluorescence imaging technology in the near-infrared-ii window for biomedical applications.J Am Chem Soc, 0,2(35):14789-14804.
    [29] ANTARIS A L, CHEN H, CHENG K, et al.A small-molecule dye for NIR-II imaging.Nat Mater, 6,5(2):235-242.
    [30] SHEPHERD J, HILDERBRAND S A, WATERMAN P, et al.A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages.Chem Biol, 7,4(11):1221-1231.
    [31] MAAFI F, LI B, GEBHARD C, et al.Development of a new bioactivatable fluorescent probe for quantification of apolipoprotein A-I proteolytic degradation in vitro and in vivo.Atherosclerosis, 7,8:8-19.
    [32] ABD-ELRAHMAN I, MEIR K, KOSUGE H, et al.Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques.Stroke, 6,7(4):1101-1108.
    [33] DEGUCHI J O, AIKAWA M, TUNG C H, et al.Inflammation in atherosclerosis:visualizing matrix metalloproteinase action in macrophages in vivo.Circulation, 6,4(1):55-62.
    [34] WANG Q, LOU R, YIN Q, et al.A nano-detection system based on a chemical probe for early diagnosis of atherosclerosis in situ.Analyst, 1,6(14):4674-4682.
    [35] WANG B, ZHANG F, WANG S, et al.Imaging endogenous HClO in atherosclerosis using a novel fast-response fluorescence probe.Chem Commun (Camb), 0,6(17):2598-2601.
    [36] MEGENS R T, OUDE E M, CLEUTJENS J P, et al.Imaging collagen in intact viable healthy and atherosclerotic arteries using fluorescently labeled CNA35 and two-photon laser scanning microscopy.Mol Imaging, 7,6(4):247-260.
    [37] HTUN N M, CHEN Y C, LIM B, et al.Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques.Nat Commun, 7,8(1):75.
    [38] NARITA Y, SHIMIZU K, IKEMOTO K, et al.Macrophage-targeted, enzyme-triggered fluorescence switch-on system for detection of embolism-vulnerable atherosclerotic plaques.J Control Release, 9,2:105-115.
    [39] LEE S, LEE M W, CHO H S, et al.Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.Circ Cardiovasc Interv, 4,7(4):560-569.
    [40] KIM S, LEE M W, KIM T S, et al.Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery.Eur Heart J, 6,7(37):2833-2844.
    [41] LU T, WEN S, CUI Y, et al.Near-infrared fluorescence imaging of murine atherosclerosis using an oxidized low density lipoprotein-targeted fluorochrome.Int J Cardiovasc Imaging, 4,0(1):221-231.
    [42] HARA T, UGHI G J, MCCARTHY J R, et al.Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo.Eur Heart J, 5,8(6):447-455.
    [43] CUI J, KESSINGER C W, JHAJJ H S, et al.Atorvastatin reduces in vivo fibrin deposition and macrophage accumulation, and improves primary patency duration and maturation of murine arteriovenous fistula.J Am Soc Nephrol, 0,1(5):931-945.
    [44] MANEA S A, VLAD M L, REBLEANU D, et al.Detection of vascular reactive oxygen species in experimental atherosclerosis by high-resolution near-infrared fluorescence imaging using VCAM-1-targeted liposomes entrapping a fluorogenic redox-sensitive probe.Oxid Med Cell Longev, 1,1:6685612.
    [45] KIM J, JANG H J, SCHELLINGERHOUT D, et al.Effects of exercise training and detraining on atheromatous matrix metalloproteinase activity in mice.Atherosclerosis, 0,9:15-23.
    [46] WANG Y, CHEN J, YANG B, et al.In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles.Theranostics, 6,6(2):272-286.
    [47] VERJANS J W, OSBORN E A, UGHI G J, et al.Targeted near-infrared fluorescence imaging of atherosclerosis:clinical and intracoronary evaluation of indocyanine green.JACC Cardiovasc Imaging, 6,9(9):1087-1095.
    [48] YOO H, KIM J W, SHISHKOV M, et al.Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo.Nat Med, 1,7(12):1680-1684.
    [49] KHAMIS R Y, WOOLLARD K J, HYDE G D, et al.Near infrared fluorescence (NIRF) molecular imaging of oxidized LDL with an autoantibody in experimental atherosclerosis.Sci Rep, 6,6:21785.
    [50] JAFFER F A, VINEGONI C, JOHN M C, et al.Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.Circulation, 8,8(18):1802-1809.
    [51] CALFON M A, VINEGONI C, NTZIACHRISTOS V, et al.Intravascular near-infrared fluorescence molecular imaging of atherosclerosis:toward coronary arterial visualization of biologically high-risk plaques.J Biomed Opt, 0,5(1):11107.
    [52] JAFFER F A, CALFON M A, ROSENTHAL A, et al.Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury.J Am Coll Cardiol, 1,7(25):2516-2526.
    [53] ABD-ELRAHMAN I, KOSUGE H, WISES S T, et al.Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion.PLoS One, 6,1(8):e160522.
    [54] CHEN W, WU Y, LU Q, et al.Endogenous ApoA-I expression in macrophages:a potential target for protection against atherosclerosis.Clin Chim Acta, 0,5:55-59.
    [55] KUKU K O, SINGH M, OZAKI Y, et al.Near-infrared spectroscopy intravascular ultrasound imaging:state of the art.Front Cardiovasc Med, 0,7:107.
    [56] VINEGONI C, BOTNARU I, AIKAWA E, et al.Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques.Sci Transl Med, 1,3(84):45r-84r.
    [57] STEFFENSEN L B, RASMUSSEN L M.A role for collagen type IV in cardiovascular disease?.Am J Physiol Heart Circ Physiol, 8,5(3):H610-H625.
    [58] HU C H, NEISSEL V M, HALPERN O S, et al.Small molecule and macrocyclic pyrazole derived inhibitors of myeloperoxidase (MPO).Bioorg Med Chem Lett, 1,2:128010.
    [59] MARUHASHI T, KIHARA Y, HIGASHI Y.Bilirubin and endothelial function.J Atheroscler Thromb, 9,6(8):688-696.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZENG Jiayu, CHENG Dan, HE Longwei. Research progress of fluorescence imaging in atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2022,30(5):375-385.

Copy
Share
Article Metrics
  • Abstract:180
  • PDF: 579
  • HTML: 0
  • Cited by: 0
History
  • Received:July 26,2021
  • Revised:September 09,2021
  • Online: May 10,2022
Article QR Code