Progress of abnormal glucose metabolism in vascular endothelial cells in coronary heart disease
Author:
Affiliation:

1.School of Mental Health,Jining, Shandong 272067, China ;2.School of Clinical Medicine,Jining, Shandong 272067, China ;3.School of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China)

Clc Number:

R541.4

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • | | | |
  • Comments
    Abstract:

    Coronary heart disease has become a serious harm to human health, endothelial dysfunction is closely related to the occurrence and development of coronary heart disease, and metabolism of glucose disorder cannot be ignored in endothelial dysfunction. This article focuses on glucose metabolism, expounds vascular endothelial glucose metabolism in normal state, and highlights the effect of coronary heart disease on endothelial glucose metabolism as well as the research methods of glucose metabolism.

    Reference
    [1] 胡盛寿, 高润霖, 刘力生, 等.《中国心血管病报告2018》概要.中国循环杂志, 9,4(3):209-220.
    [2] 谭利兰, 罗勇, 肖晨, 等.低剪切应力与动脉粥样硬化形成研究新进展.中国动脉硬化杂志, 9,7(5):432-438.
    [3] SOUILHOL C, SERBANOVIC-CANIC J, FRAGIADAKI M, et al.Endothelial responses to shear stress in atherosclerosis:a novel role for developmental genes.Nat Rev Cardiol, 0,7(1):52-63.
    [4] 瞿凯, 邱菊辉, 王贵学.血管内皮细胞屏障功能的血流动力学调控及其与动脉粥样硬化的关系.中国动脉硬化杂志, 0,8(1):1-6.
    [5] HAHN C, SCHWARTZ M A.Mechanotransduction in vascular physiology and atherogenesis.Nat Rev Mol Cell Biol, 9,0(1):53-62.
    [6] ZARIC B, OBRADOVIC M, TRPKOVIC A, et al.Endothelial dysfunction in dyslipidaemia:molecular mechanisms and clinical implications.Curr Med Chem, 0,7(7):1021-1040.
    [7] DE BOCK K, GEORGIADOU M, CARMELIET P.Role of endothelial cell metabolism in vessel sprouting.Cell Metab, 3,8(5):634-647.
    [8] BIERHANSL L, CONRADI LC, TREPS L, et al.Central role of metabolism in endothelial cell function and vascular disease.Physiology (Bethesda), 7,2(2):126-140.
    [9] VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B.Understanding the warburg effect:the metabolic requirements of cell proliferation.Science, 9,4(5930):1029-1033.
    [10] TANG X, LUO Y X, CHEN H Z, et al.Mitochondria, endothelial cell function, and vascular diseases.Front Physiol, 4,5:175.
    [11] KRTZFELDT A, SPAHR R, MERTENS S, et al.Metabolism of exogenous substrates by coronary endothelial cells in culture.J Mol Cell Cardiol, 0,2(12):1393-1404.
    [12] DE BOCK K, GEORGIADOU M, SCHOORS S, et al.Role of PFKFB3-driven glycolysis in vessel sprouting.Cell, 3,4(3):651-663.
    [13] EELEN G, DE ZEEUW P, TREPS L, et al.Endothelial cell metabolism.Physiol Rev, 8,8(1):3-58.
    [14] DRANKA B P, HILL B G, DARLEY-USMAR V M.Mitochondrial reserve capacity in endothelial cells:the impact of nitric oxide and reactive oxygen species.Free Radic Biol Med, 0,8(7):905-914.
    [15] ZHOU H, TOAN S.Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury.Biomolecules, 0,0(1):85.
    [16] FENG S, BOWDEN N, FRAGIADAKI M, et al.Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites.Arterioscler Thromb Vasc Biol, 7,7(11):2087-2101.
    [17] DODDABALLAPUR A, MICHALIK K M, MANAVSKI Y, et al.Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3.Arterioscler Thromb Vasc Biol, 5,5(1):137-145.
    [18] BERTERO T, WM O, COTTRILL K A, et al.Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.J Clin Invest, 6,6(9):3313-3335.
    [19] KOHN J C, CHEN A D, CHENG S, et al.Mechanical heterogeneities in the subendothelial matrix develop with age and decrease with exercise.J Biomech, 6,9(9):1447-1453.
    [20] KOHN J C, ZHOU D W, BORDELEAU F, et al.Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.Biophys J, 5,8(3):471-478.
    [21] PATERNOTTE E, GAUCHER C, LABRUDEB P, et al.Review:behaviour of endothelial cells faced with hypoxia.Biomed Mater Eng, 8,8(4/5):295-299.
    [22] MANN G E, YUDILEVICH D L, SOBREVIA L.Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells.Physiol Rev, 3,3(1):183-252.
    [23] LOIKE J D, CAO L, BRETT J, et al.Hypoxia induces glucose transporter expression in endothelial cells.Am J Physiol, 2,3(2 Pt 1):C326-C333.
    [24] SEMENZA G L.Hypoxia-inducible factor 1 and cardiovascular disease.Annu Rev Physiol, 4,6(39/56):39-56.
    [25] JY P, JUNG K H, LEE J H, et al.Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension.Nucl Med Biol, 7,5(8/14):8-14.
    [26] EELEN G, DE ZEEUW P, SIMONS M, et al.Endothelial cell metabolism in normal and diseased vasculature.Circ Res, 5,6(7):1231-1244.
    [27] THEODOROU K, BOON R A.Endothelial cell metabolism in atherosclerosis.Front Cell Dev Biol, 8,6:82.
    [28] THOMAS J, LINSSEN M, VAN DER VUSSE G J, et al.Acute stimulation of glucose transport by histamine in cardiac microvascular endothelial cells.Biochim Biophys Acta, 5,8(1):88-96.
    [29] JIN F, ZHENG X, YANG Y P, et al.Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF.Aging (Albany NY), 9,1(2):328-349.
    [30] VGRAN F, BOIDOT R, MICHIELS C, et al.Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.Cancer Res, 1,1(7):2550-2560.
    [31] SCHOORS S, DE BOCK K, CANTELMO A R, et al.Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis.Cell Metab, 4,9(1):37-48.
    [32] YANG Q, XU J A, MA Q, et al.PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis.Nat Commun, 8,9(1):4667.
    [33] VEYS K, ALVARADO-DIAZ A, DE BOCK K.Measuring glycolytic and mitochondrial fluxes in endothelial cells using radioactive tracers.Methods Mol Biol, 9,2:121-136.
    [34] REISZ JA, D'ALESSANDRO A.Measurement of metabolic fluxes using stable isotope tracers in whole animals and human patients.Curr Opin Clin Nutr Metab Care, 7,0(5):366-374.
    [35] CHOUINARD J A, ROUSSEAU J A, BEAUDOIN J F, et al.Positron emission tomography detection of human endothelial cell and fibroblast monolayers:effect of pretreament and cell density on 18FDG uptake.Vasc Cell, 2,4(1):5.
    [36] MASCHAUER S, PRANTE O, HOFFMANN M, et al.Characterization of 18F-FDG uptake in human endothelial cells in vitro.J Nucl Med, 4,5(3):455-460.
    [37] HIRSCH B, RSEN P.Diabetes mellitus induces long lasting changes in the glucose transporter of rat heart endothelial cells.Horm Metab Res, 9,1(12):645-652.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DU Dongyang, CAI Xiaomeng, HOU Haoran, HUANG Wenqian, LI Guangcai, TANG Xinyu, WANG You, ZHU Suhong. Progress of abnormal glucose metabolism in vascular endothelial cells in coronary heart disease[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2021,29(6):548-552.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 18,2020
  • Revised:June 02,2020
  • Online: June 11,2021
Article QR Code