Research progress of microRNA in foam cell formation
Author:
Affiliation:

1.Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, China;2.the Second Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050017, China;3.Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China;4.Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China)

  • Article
  • | |
  • Metrics
  • |
  • Reference [60]
  • | | | |
  • Comments
    Reference
    [1] Chistiakov DA, Orekhov AN, Bobryshev YV.Endothelial barrier and its abnormalities in cardiovascular disease.Front Physiol, 5,6:365.
    [2] Bobryshev YV, Ivanova EA, Chistiakov DA, et al.Macrophages and their role in atherosclerosis:pathophysiology and transcriptome analysis.Biomed Res Int, 6,6:1-13.
    [3] Li BR, Xia LQ, Liu J, et al.miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR.Biochem Biophys Res Commun, 7,4(1-2):384-389.
    [4] Peng XP, Huang L, Liu ZH.miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages.Biochimie, 6,7:79-85.
    [5] Zhang M, Wu JF, Chen WJ, et al.microRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages.Atherosclerosis, 4,4(1):54-64.
    [6] Du XJ, Lu JM.miR-135a represses oxidative stress and vascular inflammatory events via targeting toll-like receptor 4 in atherogenesis.J Cell Biochem, 8,9(7):6154-6161.
    [7] Du XJ, Lu JM, Sha Y.miR-181a inhibits vascular inflammation induced by ox-LDL via targeting TLR4 in human macrophages.J Cell Physiol, 8,3(10):6996-7003.
    [8] Qin SB, Peng DY, Lu JM, et al.miR-182-5p inhibited oxidative stress and apoptosis triggered by oxidized low-density lipoprotein via targeting toll-like receptor 4.J Cell Physiol, 8,3(10):6630-6637.
    [9] Zhou H, Zhang J, Eyers F, et al.Identification of the microRNA networks contributing to macrophage differentiation and function.Oncotarget, 6,7(20):28806-28820.
    [10] Benbaibeche H, Hichami A, Oudjit B, et al.Circulating miR-21 and miR-146a are associated with increased cytokines and CD36 in algerian obese male participants.Arch Physiol Biochem, 0,3:1-6.
    [11] Ding D, Ye G, Lin Y, et al.microRNA-26a-CD36 signaling pathway:pivotal role in lipid accumulation in hepatocytes induced by PM2.5 liposoluble extracts.Environ Pollut, 9,8:269-278.
    [12] Li H, Fan J, Zhao Y, et al.Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart.Circ Res, 9,5(12):1106-1120.
    [13] Kelley JL, Ozment TR, Li C, et al.Scavenger receptor-A (CD204):a two-edged sword in health and disease.Crit Rev Immunol, 4,4(3):241-261.
    [14] Wang S, Zan J, Wu M, et al.miR-29a promotes scavenger receptor A expression by targeting QKI (quaking) during monocyte-macrophage differentiation.Biochem Biophys Res Commun, 5,4(1):1-6.
    [15] Yan H, Wang S, Li Z, et al.Upregulation of miRNA-155 expression by oxLDL in dendritic cells involves JAK1/2 kinase and transcription factors YY1 and MYB.Int J Mol Med, 6,7(5):1371-1378.
    [16] Kattoor AJ, Kanuri SH, Mehta JL.Role of ox-LDL and LOX-1 in atherogenesis.Curr Med Chem, 9,6(9):1693-1700.
    [17] Li X, Feng S, Luo Y, et al.Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells.In Vitro Cell Dev Biol Anim, 8,4(2):99-110.
    [18] Dai Y, Wu X, Dai D, et al.microRNA-98 regulates foam cell formation and lipid accumulation through repression of LOX-1.Redox Biol, 8,6:255-262.
    [19] Liu M, Tao G, Liu Q, et al.microRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo.Int J Mol Med, 7,0(1):57-64.
    [20] 秦冰, 肖波, 姜婷,等.miR-590-5p对ox-LDL诱导血管内皮细胞凋亡以及LOX-1表达的影响.中南大学学报(医学版), 2,7(7):675-681.
    [21] Ghosh S.Early steps in reverse cholesterol transport:cholesteryl ester hydrolase and other hydrolases.Curr Opin Endocrinol Diabetes Obes, 2,9(2):136-141.
    [22] Wang B, He PP, Zeng GF, et al.miR-467b regulates the cholesterol ester formation via targeting ACAT1 gene in RAW 264.7 macrophages.Biochimie, 7,2:38-44.
    [23] Zhang M, Wu JF, Chen WJ, et al.microRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages.Atherosclerosis, 4,4(1):54-64.
    [24] Xu J, Hu G, Lu M, et al.miR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation.Acta Biochim Biophys Sin (Shanghai), 3,5(11):953-962.
    [25] Sun HJ, Zhao MX, Liu TY, et al.Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway.Sci Rep, 6,6:23596.
    [26] Chanyshev MD, Ushakov DS, Gulyaeva LF.Expression of miR-21 and its ACAT1, ARMCX1, and PTEN target genes in liver of female rats treated with DDT and Benzopyrene.Mol Biol (Mosk), 7,1(4):664-670.
    [27] Chanyshev MD, Razumova YV, Ovchinnikov VY, et al.miR-21 regulates the ACAT1 gene in MCF-7 cells.Life Sci, 8,9:173-178.
    [28] Sekiya M, Osuga J, Nagashima S, et al.Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis.Cell Metab, 9,0(3):219-228.
    [29] Kulyté A, Lorente-Cebrián S, Gao H, et al.microRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia.Am J Physiol Endocrinol Metab, 4,6(3):E267-274.
    [30] Li L, Wu F, Xie Y, et al.miR-202-3p inhibits foam cell formation and is associated with coronary heart disease risk in a Chinese population.Int Heart J, 0,1(1):153-159.
    [31] 陈羽斐, 沈伟, 施海明.巨噬细胞免疫代谢与动脉粥样硬化的研究进展.中国动脉硬化杂志, 0,8(1):74-80.
    [32] Rayner KJ, Fernandez-Hernando C, Moore KJ.microRNAs regulating lipid metabolism in atherogenesis.Thromb Haemost, 2,7(4):642-647.
    [33] Rayner KJ, Suárez Y, Dávalos A, et al.miR-33 contributes to the regulation of cholesterol homeostasis.Science, 0,8(5985):1570-1573.
    [34] Rayner KJ, Sheedy FJ, Esau CC, et al.Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.J Clin Invest, 1,1(7):2921-2931.
    [35] Adlakha YK, Khanna S, Singh R, et al.Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis.Cell Death Dis, 3,4(8):e780.
    [36] Yang S, Ye ZM, Chen S, et al.microRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages.J Mol Cell Cardiol, 8,3:139-149.
    [37] Li HN, Zhao X, Zha YJ, et al.miR-146a-5p suppresses ATP binding cassette subfamily G member 1 dysregulation in patients with refractory mycoplasma pneumoniae via interleukin 1 receptor associated kinase 1 downregulation.Int J Mol Med, 9,4(6):2003-2014.
    [38] Wu Q, Yang Z, Xia L, et al.Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters.Oncotarget, 4,5(22):11552-11563.
    [39] Liang B, Wang X, Song X, et al.microRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.Biochim Biophys Acta Mol Cell Biol Lipids, 7,2(9):929-938.
    [40] Ramírez CM, Rotllan N, Vlassov AV, et al.Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.Circ Res, 3,2(12):1592-1601.
    [41] Lv YC, Tang YY, Peng J, et al.microRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.Atherosclerosis, 4,6(1):215-226.
    [42] Wang D, Xia M, Yan X, et al.Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b.Circ Res, 2,1(8):967-981.
    [43] Meiler S, Baumer Y, Toulmin E, et al.microRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.Arterioscler Thromb Vasc Biol, 5,5(2):323-331.
    [44] Wang Y, Wen Y, Xiao P, et al.Di-n-butyl phthalate promotes lipid accumulation via the miR-200c-5p-ABCA1 pathway in THP-1 macrophages.Environ Pollut, 0,4:114723.
    [45] Tang XE, Li H, Chen LY, et al.IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells.Cytokine, 9,2:154385.
    [46] Zhao R, Feng J, He G.miR-613 regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages.Biochem Biophys Res Commun, 4,8(3):329-334.
    [47] Zhang N, Lei J, Lei H, et al.microRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression.Exp Cell Res, 5,6(1):33-42.
    [48] Miao H, Zeng H, Gong H.microRNA-212 promotes lipid accumulation and attenuates cholesterol efflux in THP-1 human macrophages by targeting SIRT1.Gene, 8,3:55-60.
    [49] Wang M, Li L, Liu R, et al.Obesity-induced overexpression of miRNA-24 regulates cholesterol uptake and lipid metabolism by targeting SR-B1.Gene, 8,8:196-203.
    [50] Hu Z, Shen WJ, Kraemer FB, et al.microRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type Ⅰ in steroidogenic cells.Mol Cell Biol, 2,2(24):5035-5045.
    [51] Wang L, Jia XJ, Jiang HJ, et al.microRNAs 5,6, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition.Mol Cell Biol, 3,3(10):1956-1964.
    [52] Friedman RC, Farh KK, Burge CB,et al.Most mammalian mRNAs are conserved targets of microRNAs.Genome Res, 9,9(1):92-105.
    [53] Martino F, Carlomosti F, Avitabile D, et al.Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age.Clin Sci (Lond), 5,9(11):963-972.
    [54] D'Agostino M, Martino F, Sileno S, et al.Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels:implication of a ZEB1-dependent mechanism.Clin Sci (Lond), 7,1(18):2397-2408.
    [55] Gonzalo-Calvo DD, Cenarro A, Garlaschelli K, et al.Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease.J Mol Cell Cardiol, 7,6:55-67.
    [56] 彭雪英, 武怀珠, 王敏杰, 等.高脂血症、单核细胞亚型与动脉粥样硬化.中国动脉硬化杂志, 0,8(9):815-822.
    [57] Gao W, He HW, Wang ZM, et al.Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease.Lipids Health Dis, 2,1:55.
    [58] Guo J, Lin Y, Wei J, et al.Diagnostic value of serum miR-587 in patients with metabolic syndrome.Clin Lab, 2019.DOI:10.7754/Clin.Lab.2019.181253.
    [59] Yang C, Guo J, Lin Y, et al.Peripheral blood miR-937 may serve as a biomarker for metabolic disorders by targeting AMPKα.Clin Lab, 2019.DOI:10.7754/Clin.Lab.2018.181113.
    [60] Vickers KC, Palmisano BT, Shoucri BM, et al.microRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.Nat Cell Biol, 1,3(4):423-433.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TAN Zhenzhen, CHEN Jinbo, WANG Dan, FU Siqi, WANG Jing, GUO Huicai, MA Lijie. Research progress of microRNA in foam cell formation[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2021,29(1):30-36.

Copy
Share
Article Metrics
  • Abstract:528
  • PDF: 825
  • HTML: 0
  • Cited by: 0
History
  • Received:November 16,2020
  • Revised:December 04,2020
  • Online: January 22,2021
Article QR Code