Mechanism of Sanhuang Xiexin decoction in the treatment of atherosclerosis based on network pharmacology
Author:
Affiliation:

1.Luohe Central Hospital, Department of Clinical Pharmacology, Luohe, Henan 462300, China;2.Department of Pharmacy, the Second People's Hospital of Luohe, Luohe, Henan 462300, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Aim To investigate the pharmacology mechanism of Sanhuang Xiexin decoction in the treatment of atherosclerosis. Methods All the chemical components and the targets related to Sanhuang Xiexin decoction were searched by the traditional Chinese medicine system pharmacology platform (TCMSP), the oral bioavailability (OB) ≥30% and drug likeness(DL) ≥ 0.18 were used as the screening conditions for molecular compounds and the comparative Toxicogenomics Database (CTD) were used to screen the genes related to atherosclerosis. The network map was constructed by Cytoscape 3.6.1 soft ware and the DAVID database was used for pathway annotation and analysis. ResultsThe compounds-targets-pathway network of Sanhuang Xiexin decoction related to atherosclerosis contained 41 compounds, 22 corresponding targets and 39 signaling pathway. The top four compounds were quercetin, baicalein, wogonin and emodin. The top five targets were prostaglandin G/H synthase 2 (PTGS2), intercellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), tumor necrosis factor (TNF) and interleukin-6(IL-6). Related pathway were HIF-1 signaling pathway, cytokine-cytokine receptor interaction, NF-κB signaling pathway, VEGF signaling pathway, arachidonic acid metabolism and PPAR signaling pathway. Conclusion The active components of Sanhuang Xiexin decoction may regulate arachidonic acid metabolism, NF-κB signaling pathway, VEGF signaling pathway in the treatment of atherosclerosis mainly through PTGS2, ICAM-1, MMP-9, IL-6 and other targets.

    Reference
    [1] Emini VB, Perrotta P, Gregory DM, et al.Animal models of atherosclerosis.Eur J Pharmacol, 7,6(5):3-13.
    [2] 张强, 罗毅.动脉粥样硬化中药治疗机制的研究进展.中西医结合心血管病杂志, 9,7(11):1-2.
    [3] 李颜, 郭澄.三黄泻心汤的现代药理研究进展.中国药房, 0,1(11):1048-1050.
    [4] 殷小杰, 马晓静, 王岚, 等.三黄泻心汤活血化瘀优势方抗动脉粥样硬化的作用机制.中国实验方剂学杂志, 8,4(22):1-6.
    [5] 张翔, 江兴林, 周利玲, 等.大黄素对氧化应激所致动脉粥样硬化模型大鼠的干预研究.中医药导报, 6,2(21):27-29.
    [6] 孙治中, 江艳君, 纪树亮, 等.黄芩苷治疗小鼠动脉粥样硬化模型的作用与机制.中国组织工程研究, 9,3(19):3037-3043.
    [7] 左璇, 罗金雀, 姜新海, 等.小檗碱对ApoE-/-小鼠动脉粥样硬化的影响及机制研究.药学学报, 9,4(1):120-126.
    [8] Pang XC, Kang D, Fang JS, et al.Network pharmacology-based analysis of Chinese herbal Naodesheng formula for application to Alzheimer’s disease .Chin J Nat Med, 8,6(1):53-62.
    [9] 杨凯麟, 曾柳庭, 葛金文.基于网络药理学的丹参干预动脉粥样硬化分子机制的分析.中国动脉硬化杂志, 8,6(4):407-413.
    [10] Ru J, Peng L, Wang J, et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines .J Cheminform, 4,6(1):13-18.
    [11] Kim MT, Sedykh A, Chakravarti SK, et al.Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches.Pharm Res, 4,1(4):1002-1014.
    [12] Machado D, Girardini M, Viveiros M, et al.Challenging the drug likeness dogma for new drug discovery in tuberculosis .Front Microbiol, 8,3(9):1-23.
    [13] 刘鑫馗, 吴嘉瑞, 张丹, 等.基于网络药理学的参附汤作用机制分析 .中国实验方剂学杂志, 7,3(16):203-210.
    [14] 李晓燕, 董姝, 魏滨, 等.六味地黄汤中药成分-靶标-疾病网络分析及效应机制预测 .中国实验方剂学杂志, 7,3(5):189-195.
    [15] 张梦, 李文婧, 杜芬, 等.槲皮素对载脂蛋白E基因敲除小鼠动脉粥样硬化斑块的消退作用 .中国药师, 9,2(5):800-804.
    [16] Tsai KL, Hung CH, Chan SH, et al.Baicalein protects against ox-LDL-caused oxidative stress and inflammation by modulation of AMPK-alpha.Oncotarget, 6,7(45):72458-72468.
    [17] Liu YM, Wang X, Nawaz A, et al.Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway.Acta Pharmacol Sin, 1,2(12):1475-1482.
    [18] Song D, Fang G, Mao SZ, et al.Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice.Atherosclerosis, 8,0(5):68-75.
    [19] Le NT, Sandhu UG, Quintana-Quezada RA, et al.Flow signaling and atherosclerosis.Cell Mol Life Sci, 6,4(10):1835-1858.
    [20] 张永杰, 赵国安, 林飞, 等.红景天苷抗动脉粥样硬化机制研究进展.中国动脉硬化杂志, 9,7(6):547-552.
    [21] Yu M, Tsai SF, Kuo YM.The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis.Int J Mol Sci, 7,8(6):1260-1289.
    [22] Brown BA, Williams H, George SJ.Evidence for the involvement of matrix-degrading metalloproteinases (MMPs) in atherosclerosis.Prog Mol Biol Transl Sci, 7,7(3):197-237.
    [23] Kim SM, Huh JW, Kim EY, et al.Endothelial dysfunction inducesatherosclerosis:increased aggrecan expression promotes apoptosis in vascular smooth muscle cells.BMB Rep, 9,2(2):145-150.
    [24] Lu XL, Zhao CH, Yao XL, et al.Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/Akt signaling pathway.Biomed Pharmacother, 7,5(1):658-671.
    [25] Ku SK, Bae JS.Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo.BMB Rep, 5,8(9):519-524.
    Related
    Cited by
Get Citation

WANG Dandan, YUAN Huiying, WU Zuomin, TIAN Huidong, YANG Zhongjie, WANG Rui. Mechanism of Sanhuang Xiexin decoction in the treatment of atherosclerosis based on network pharmacology[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2020,28(11):972-980.

Copy
Related Videos

Share
Article Metrics
  • Abstract:631
  • PDF: 695
  • HTML: 0
  • Cited by: 0
History
  • Received:July 02,2019
  • Revised:August 21,2019
  • Online: November 30,2020
Article QR Code