Correlation analysis of common inflammatory factors and carotid atherosclerotic plaque
Author:
Affiliation:

1.Department of Second Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China;2.Second Clinical Medical College of Zhengzhou University, Zhengzhou, Henan 450000, China;3.Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [54]
  • | | | |
  • Comments
    Abstract:

    The incidence of stroke in China has increased year by year, and carotid stenosis is one of the main causes of stroke. With the development of atherosclerotic inflammatory mechanisms, cytokines closely related to chronic inflammatory response are increasingly important in the study of carotid plaque pathogenesis. For carotid stenosis, it is important to fully understand the various cytokines involved in the pathogenesis of atherosclerosis. This article reviews the new understanding and research direction of several common cytokines in the process of carotid artery plaque lesions.

    Reference
    [1] 陈竺.全国第三次死因回顾抽样调查报告.北京:中国协和医科大学出版社, 2008:38-39.
    [2] Brett AS, Levine JD.The case against identifying carotid stenosis in a symptomatic patients.JAMA Intern Med, 4,4(12):2004-2008.
    [3] TalebS.Inflammation in atherosclerosis.Arch Cardiovasc Dis, 6,9(12):708-715.
    [4] Santovito D, Weber C.Atherosclerosis revisited from a clinical perspective:still an inflammatory disease? .Thromb Haemost, 7,7(2):231-237.
    [5] Nagornev VA, Ketlinsky SA.Humoral and cell immunity against atherosclerosis:the possibility of vaccine development.Med Akad Zh, 9,9:2-15.
    [6] Pant S, Deshmukh A, Gurumurthy GS.Inflammation and atherosclerosis revisited.J Cardiovasc Pharmacol Ther, 4,9(2):170-178.
    [7] Viola J, Soehnlein O.Atherosclerosis-a matter of unresolved inflammation.Semin Immunol, 5,7(3):184-193.
    [8] Amin HZ, Sasaki N, Hirata KI.Regulatory T cell immunity in atherosclerosis.Acta Med Indones, 7,9(1):63-68.
    [9] Spitz C, Winkels H, Bürger C, et al.Regulatory T cells in atherosclerosis:critical immune regulatory function and therapeutic potential.Cell Mol Life Sci, 6,3(5):901-922.
    [10] Zhang Y, Zhang Y, Gu W, et al.TH1/TH2 cell differentiation and molecular signals.Adv Exp Med Biol, 4,1:15-44.
    [11] Mallat Z, Taleb S, Ait-Oufella H, et al.The role of adaptive T cell immunity in atherosclerosis.J Lipid Res, 9,0:364-369.
    [12] Fatkhullina AR, Peshkova IO, Koltsova EK.The role of cytokines in the development of atherosclerosis.Biochemistry (Mosc), 6,1(11):1358-1370.
    [13] Moss JW, Ramji DP.Cytokines:roles in atherosclerosis disease progression and potential therapeutic targets.Future Med Chem, 6,8(11):1317-1330.
    [14] Thompson JC, Wilson PG, Wyllie AP.Elevated circulating TGF-β is not the cause of increased atherosclerosis development in biglycan deficient mice.Atherosclerosis, 8,8:68-75.
    [15] Hilgendorf I, Swirski FK, Robbins CS.Monocyte fate in atherosclerosis.Arterioscler Thromb Vasc Biol, 5,5(2):272-279.
    [16] Han X, Boisvert WA.Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function.Thromb Haemost, 5,3(3):505-512.
    [17] Butcher MJ, Filipowicz AR, Waseem TC.Atherosclerosis-driven tregplasticity results in formation of a dysfunctional subset of plastic IFN-γ+ Th1/Tregs.Circ Res, 6,9(11):1190-1203.
    [18] Ranjbaran H, Sokol SI, Gallo A, et al.An inflammatory pathway of IFN-gamma production in coronary atherosclerosis.J Immunol, 7,8:592-604.
    [19] Koltsova EK, Garcia Z, Chodaczek G, et al.Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis.J Clin Invest, 2,2:3114-3126.
    [20] Boshuizen MC, de Winther MP.Interferons as essential modulators of atherosclerosis.Arterioscler Thromb Vasc Biol, 5,5(7):1579-1588.
    [21] Yu XH, Zhang J, Zheng XL.Interferon-γ in foam cell formation and progression of atherosclerosis.Clin Chim Acta, 5,1:33-43.
    [22] Wuttge DM, Zhou X, Sheikine Y, et al.CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions.Arterioscler Thromb Vasc Biol, 4,4(4):750-755.
    [23] Kalliolias GD, Ivashkiv LB.TNF biology, pathogenic mechanisms and emerging therapeutic strategies.Nat Rev Rheumatol, 6,2:49-62.
    [24] Canault M, Peiretti F, Poggi M, et al.Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha.J Pathol, 8,4:574-583.
    [25] Moss JW, Ramji DP.Interferon-γ:Promising therapeutic target in atherosclerosis.World J Exp Med, 5,5(3):154-159.
    [26] McLaren JE,Michael DR,Ashlin TG, et al.Cytokines,macrophage lipid metabolism and foam cells:Implications for cardiovascular disease therapy.Prog Lipid Res, 1,0:331-347.
    [27] Pober JS, Sessa WC.Evolving functions of endothelial cells in inflammation.Nat Rev Immunol, 7,7:803-815.
    [28] Taubert A, Hermosilla C.Bovine recombin ant-IFN-gamma induces endothelial cell gene transcription of immunoregulatory molecules and upregulates PMN and PBMC adhesion on bovine endothelial cells .Vet Res Commun, 8,2(1):35-47.
    [29] Choi HJ, Kim NE, Kim BM.TNF-α-induced YAP/TAZ activity mediates leukocyte-endothelial adhesion by regulating VCAM1 expression in endothelial cells.Int J Mol Sci, 8,9(11).doi:10.3390/ijms19113428.
    [30] Weber C, Zernecke A, Libby P.The multifaceted contributions of leukocyte subsets to atherosclerosis:lessons from mouse models.Nat Rev Immunol, 8,8(10):802-815.
    [31] Tabas I, Garcia-Cardena G, Owens GK.Recent insights into the cellular biology of atherosclerosis.J Cell Biol, 5,9:13-22.
    [32] Hansson GK, Libby P, Tabas I.Inflammation and plaque vulnerability.J Intern Med, 5,8:483-493.
    [33] Andres V, Pello OM, Silvestre-Roig C.Macrophage proliferation and apoptosis in atherosclerosis.Curr Opin Lipidol, 2,3(5):429-438.
    [34] Ji J, Si L, Fang W, et al.Interferon-gamma inhibits in situ expression of PDGF-beta mRNA by smooth muscle cells in injured rabbit arteries after transluminal balloon angioplasty.Chin Med J (Engl), 1,4(2):139-142.
    [35] Lim S, Park S.Role of vascular smooth muscle cell in the inflammation of atherosclerosis.BMB Rep, 4,7(1):1-7.
    [36] Whitman SC, Ravisankar P, Daugherty A.IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/- mice.J Interferon Cytokine Res, 2,2(6):661-670.
    [37] Goumans MJ, Ten Dijke P.TGF-β signaling in control of cardiovascular function.Cold Spring Harb Perspect Biol, 8,0(2).doi:10.1101/cshperspect.a022210.
    [38] Bjrkbacka H, Fredrikson GN, Nilsson J.Emerging biomarkers and intervention targets for immune-modulation of atherosclerosis - a review of the experimental evidence.Atherosclerosis, 3,7(1):9-17.
    [39] James E.Mc Laren, Daryn R, et al.Cytokines, macrophage lipid metabolism and foam cells:Implications for cardiovascular disease therapy.Progress Lipid Res, 1,0(4):331-347.
    [40] Chen PY, Qin L, Li G.Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.EMBO Mol Med, 6,8(7):712-728.
    [41] Cipollone F, Fazia M, Mincione G, et al.Increased expression of transforming growth factor-β1 as a stabilizing factor in human atherosclerotic plaques.Stroke, 4,5:2253-2257.
    [42] Robertson A-KL, Rudling M, Zhou X, et al.Disruption of TGF-beta signaling in T cells accelerates atherosclerosis.J Clin Invest, 3,2(9):1342-1350.
    [43] Gojova A, Brun V, Esposito B, et al.Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice.Blood, 3,2(12):4052-4058.
    [44] Han X, Boisvert WA.Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function.Thromb Haemost, 5,3(3):505-512.
    [45] Yang H, Liu HP, Weng D.IL-10 negatively regulates oxLDL-P38 pathway inhibited macrophage emigration.Exp Mol Pathol, 4,7(3):590-599.
    [46] Mallat Z, Besnard S, Duriez M, et al.Protective role of interleukin-10 in atherosclerosis.Circ Res, 9,5(8):e17-24.
    [47] Rincón-Arévalo H, Villa-Pulgarín J, Tabares J, et al.Interleukin-10 production and T cell-suppressive capacity in B cell subsets from atherosclerotic apoE -/- mice.Immunol Res, 7,5(5):995-1008.
    [48] Shi JY, Ma LJ, Zhang JW.FOXP3 is a HCC suppressor gene and acts through regulating the TGF-β/Smad2/3 signaling pathway.BMC Cancer, 7,7(1):648.
    [49] Oh SA, Liu M, Nixon BG, et al.Foxp3-independent mechanism by which TGF-β controls peripheral T cell tolerance.Send Proc Natl Acad Sci USA, 7,4(36):E7536-E7544.
    [50] Jia L, Zhu L, Wang JZ, et al.Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease.Atherosclerosis, 3,8(2):346-352.
    [51] Wang Z, Mao S, Zhan Z, et al.Effect of hyperlipidemia on Foxp3 expression in apolipoprotein E-knockout mice.J Cardiovasc Med (Hagerstown), 2014, 15(4):273-279.
    [52] Takimoto T, Wakabayashi Y, Sekiya T, et al.Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development.J Immunol, 0,5 (2):842-855.
    [53] Qiao X, Rao P, Zhang Y, et al.Redirecting TGF-β signaling through the β-Catenin Foxocomplex prevents kidney fibrosis.J Am Soc Nephrol, 8,9(2):557-570.
    [54] Patel S, Chung SH, White G, et al.The “atheroprotective” mediators apolipoprotein A-I and Foxp3 are over-abundant in unstable carotid plaques.Int J Cardiol, 2010, 145(2):183-187.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YUAN Meng, LIU Lulu, DONG Honglin. Correlation analysis of common inflammatory factors and carotid atherosclerotic plaque[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2020,28(3):258-261.

Copy
Share
Article Metrics
  • Abstract:1196
  • PDF: 1058
  • HTML: 0
  • Cited by: 0
History
  • Received:April 27,2019
  • Revised:June 22,2019
  • Online: January 20,2020
Article QR Code