The impact of obesity on atherosclerosis
Author:
Affiliation:

Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [51]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Obesity is a chronic metabolic disease caused by a variety of factors, manifested by excessive accumulation of body fat and/or abnormal fat distribution. The main pathogenesis of atherosclerosis is lipid accumulation within the artery walls, the proliferation of smooth muscle cell and fibrous matrix, and development of atherosclerosis plaques. A large number of basic and clinical studies have shown that obesity is a well-established risk factor for atherosclerosis, and its potential mechanisms include abnormal lipid metabolism, insulin resistance, inflammation, and endothelial dysfunction.However, the mechanistic link between accumulation of adipose tissue and development of atherosclerosis is not clear. This article will focus on the opinions of epicardial adipose tissue and perivascular adipose tissue, new adipokines, adipose-derived exosomes, and adipose browning, in order to state the impact of obesity on atherosclerosis and to provide a new perspective for the study of intervention strategies for atherosclerosis.

    Reference
    [1] Müller MJ, Geisler C.Defining obesity as a disease.Eur J Clin Nutr, 7,1(11):1256-1258.
    [2] GBD 2015 Obesity Collaborators.Health effects of overweight and obesity in 195 countries over 25 years.N Engl J Med, 7,7(1):13-27.
    [3] 中国肥胖问题工作组数据汇总分析协作组.中国成人体重指数和腰围对相关疾病危险因素异常的预测价值:适宜体质指数和腰围切点的研究.中华流行病学杂志, 2,3(1):5-10.
    [4] Neeland IJ, Ross R, Després JP, et al.Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease:a position statement.Lancet Diabetes Endocrinol, 9,7(9):715-725.
    [5] Piché ME, Poirier P, Lemieux I, et al.Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease:an update.Prog Cardiovasc Dis, 8,1(2):103-113.
    [6] Roever LS, Resende ES, Diniz AL, et al.Abdominal obesity and association with atherosclerosis risk factors:the Uberlndia Heart Study.Medicine (Baltimore), 6,5(11):e1357.
    [7] Salgado-Somoza A, Teijeira-Fernandez E, Fernandez AL, et al.Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress.Am J Physiol Heart Circ Physiol, 0,9(1):H202-209.
    [8] Ansaldo AM, Montecucco F, Sahebkar A, et al.Epicardial adipose tissue and cardiovascular diseases.Int J Cardiol, 2019, doi:10.1016/j.ijcard.2018.09.089.
    [9] Dutour A, Achard V, Sell H, et al.Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease.J Clin Endocrinol Metab, 0,5(2):963-967.
    [10] Qi XY, Qu SL, Xiong WH, et al.Perivascular adipose tissue (PVAT) in atherosclerosis:a double-edged sword.Cardiovasc Diabetol, 8,7(1):134.
    [11] Li C, Wang Z, Wang C, et al.Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy.PLoS One, 5,0(5):e0124031.
    [12] Margaritis M, Antonopoulos AS, Digby J, et al.Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels.Circulation, 3,7(22):2209-2221.
    [13] Payne GA, Borbouse L, Kumar S, et al.Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway.Arterioscler Thromb Vasc Biol, 0,0(9):1711-1717.
    [14] Park SY, Kim KH, Seo KW, et al.Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway.J Pathol, 4,2(1):87-97.
    [15] Wang P, Xu TY, Guan YF, et al.Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor:role of nicotinamide mononucleotide.Cardiovasc Res, 9,1(2):370-380.
    [16] Engeli S, Gorzelniak K, Kreutz R, et al.Co-expression of renin-angiotensin system genes in human adipose tissue.J Hypertens, 9,7(4):555-560.
    [17] Fukuda D, Enomoto S, Nagai R, et al.Inhibition of renin-angiotensin system attenuates periadventitial inflammation and reduces atherosclerotic lesion formation.Biomed Pharmacother, 9,3(10):754-761.
    [18] Achari AE, Jain SK.Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction.Int J Mol Sci, 7,8(6):E1321.
    [19] Morita M, Yano S, Yamaguchi T, et al.Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells.J Diabetes Complications, 3,7(1):11-15.
    [20] Espinola-Klein C, Gori T, Blankenberg S, et al.Inflammatory markers and cardiovascular risk in the metabolic syndrome.Front Biosci (Landmark Ed), 1,6(1):1663-1674.
    [21] Furukawa K, Hori M, Ouchi N, et al.Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages.Biochem Biophys Res Commun, 4,7(3):831-836.
    [22] Yang Y, Li Y, Ma Z, et al.A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection .Prog Lipid Res, 6,4(1):170-177.
    [23] Wei Z, Lei X, Petersen PS, et al.Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice.Am J Physiol Endocrinol Metab, 4,6(7):E779-790.
    [24] Zheng Q, Yuan Y, Yi W, et al.C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway.Arterioscler Thromb Vasc Biol, 1,1(11):2616-2623.
    [25] Uemura Y, Shibata R, Ohashi K, et al.Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation.FASEB J, 3,7(1):25-33.
    [26] Li J, Zhang P, Li T, et al.CTRP9 enhances carotid plaque stability by reducing pro-inflammatory cytokines in macrophages.Biochem Biophys Res Commun, 5,8(4):890-895.
    [27] Gomez-Samano MA, Grajales-Gomez M, Zuarth-Vazquez JM, et al.Fibroblast growth factor 21 and its novel association with oxidative stress.Redox Biol, 7,1(5):335-341.
    [28] Zhang X, Yeung DC, Karpisek M, et al.Serum FGF21 levels are increased in obesity and are independentlyassociated with the metabolic syndrome in humans.Diabetes, 8,7(5):1246-1253.
    [29] Li Q, Zhang Y, Ding D, et al.Association between serum fibroblast growth factor 21 and mortality among patients with coronary artery disease.J Clin Endocrinol Metab, 6,1(12):4886-4894.
    [30] Wang N, Li JY, Li S, et al.Fibroblast growth factor 21 regulates foam cells formation and inflammatory response in Ox-LDL-induced THP-1 macrophages.Biomed Pharmacother, 8,8:1825-1834.
    [31] Zhang Y, Liu Z, Zhou M, et al.Therapeutic effects of fibroblast growth factor21 against atherosclerosis via the NFκB pathway.Mol Med Rep, 8,7(1):1453-1460.
    [32] Lin XL, He XL, Zeng JF, et al.FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells.DNA Cell Biol, 4,3(8):514-521.
    [33] Zhang J, Wu Y, Zhang Y, et al.The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages.Mol Endocrinol, 8,2(6):1416-1426.
    [34] Choi KM, Lee JS, Kim EJ, et al.Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease.Eur J Endocrinol, 8,8(2):203-207.
    [35] Law IK, Xu A, Lam KS, et al.Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity.Diabetes, 0,9(4):872-882.
    [36] Jin D, Guo H, Bu SY, et al.Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure.FASEB J, 1,5(2):754-764.
    [37] Boekhorst BC, Bovens SM, Hellings WE, et al.Molecular MRI of murine atherosclerotic plaque targeting NGAL:a protein associated with unstable human plaque characteristics.Cardiovasc Res, 1,9(3):680-688.
    [38] Villarroya J, Cereijo R, Villarroya F.An endocrine role for brown adipose tissue?.Am J Physiol Endocrinol Metab, 3,5(5):E567-572.
    [39] Kranendonk ME, de Kleijn DP, Kalkhoven E, et al.Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease.Cardiovasc Diabetol, 4,3:37.
    [40] Xie Z, Wang X, Liu X, et al.Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization.J Am Heart Assoc, 8,7(5):e007442.
    [41] Deng ZB, Poliakov A, Hardy RW, et al.Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance.Diabetes, 9,8(11):2498-2505.
    [42] Zhao H, Shang Q, Pan Z, et al.Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and Beiging in White Adipose Tissue.Diabetes, 8,7(2):235-247.
    [43] Ying W, Riopel M, Bandyopadhyay G, et al.Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity.Cell, 7,1(2):372-384.
    [44] Liu T, Sun YC, Cheng P, et al.Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance.Biochem Biophys Res Commun, 9,5(2):352-358.
    [45] Cinti S.Transdifferentiation properties of adipocytes in the adipose organ.Am J Physiol Endocrinol Metab, 9,7(5):E977-986.
    [46] Takx RA, Ishai A, Truong QA, et al.Supraclavicular brown adipose tissue 18F-FDG uptake and cardiovascular disease.J Nucl Med, 6,7(8):1221-1225.
    [47] Villarroya F, Cereijo R, Villarroya J, et al.Brown adipose tissue as a secretory organ.Nat Rev Endocrinol, 7,3(1):26-35.
    [48] Wang GX, Zhao XY, Meng ZX, et al.The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis.Nat Med, 4,0(12):1436-1443.
    [49] Rao RR, Long JZ, White JP, et al.Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis.Cell, 4,7(6):1279-1291.
    [50] Yu J, Lv Y, Di W, et al.MiR-27b-3p Regulation in browning of human visceral adipose related to central obesity.Obesity (Silver Spring), 8,6(2):387-396.
    [51] Distel E, Penot G, Cadoudal T, et al.Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats.Biochimie, 2,4(8):1660-1667.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SUN Heng, QI Xiaoyan, XIAO Xinhua. The impact of obesity on atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2019,27(10):829-834.

Copy
Share
Article Metrics
  • Abstract:1541
  • PDF: 944
  • HTML: 0
  • Cited by: 0
History
  • Received:June 10,2019
  • Revised:September 02,2019
  • Online: September 19,2019
Article QR Code