Roles of lipoprotein lipase in triglyceride metabolism and atherosclerosis
Author:
Affiliation:

1. Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Human Province, Medical Research Center,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study;2. School of Pharmacy, University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R363;R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • | | | |
  • Comments
    Abstract:

    Triglyceride (TG) is predominantly present in triglyceride-rich lipoproteins (TRLs). Dysregulation of TRL metabolism is closely associated with the occurrence and development of atherosclerosis. Lipoprotein lipase (LPL), a glycoprotein secreted by parenchyma cells, can cleave TG within the TRLs to produce free fatty acid. A variety of factors are involved in TRL metabolism and atherosclerosis progression by regulating LPL expression and activity. Thus, clarifying the role TRL metabolism and its regulatory mechanisms could have significant implications for the prevention and treatment of cardiovascular disease.

    Reference
    [1] Do R, Willer CJ, Schmidt EM, et al.Common variants associated with plasma triglycerides and risk for coronary artery disease.Nat Genet, 3,5(11):1345-1352.
    [2] Shahid SU, Shabana NA, Rehman A, et al.GWAS implicated risk variants in different genes contribute additively to increase the risk of coronary artery disease (CAD) in the Pakistani subjects.Lipids Health Dis, 8,7(1):89.
    [3] Toth PP.Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease.Vasc Health Risk Manag, 6,2(6):171-183.
    [4] Kockx M, Kritharides L.Triglyceride rich lipoproteins.Cardiol Clin, 8,6(2):265-275.
    [5] Rip J, Nierman MC, Ross CJ, et al.Lipoprotein lipase S447X:a naturally occurring gain-of-function mutation.Arterioscler Thromb Vasc Biol, 6,6(6):1236-1245.
    [6] Saika Y, Sakai N, Takahashi M, et al.Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis.Eur J Clin Invest, 3,3(3):216-222.
    [7] Suzuki T, Sawada S, Ishigaki Y, et al.Lipoprotein lipase deficiency (R243H) in a type 2 diabetes patient with multiple arterial aneurysms.Intern Med, 6,5(9):1131-1136.
    [8] Varbo A, Benn M, Tybjaerg-Hansen A,et al.Remnant cholesterol as a causal risk factor for ischemic heart disease.J Am Coll Cardiol, 3,1(4):427-436.
    [9] Lacey B, Herrington WG, Preiss D, et al.The role of emerging risk factors in cardiovascular outcomes.Curr Atheroscler Rep, 7,9(6):28.
    [10] Laatsch A, Merkel M, Talmud PJ, et al.Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance.Atherosclerosis, 9,4(1):105-111.
    [11] Romo ML, McCrillis AM, Brite J, et al.Pharmacologic androgen deprivation and cardiovascular disease risk factors:a systematic review.Eur J Clin Invest, 5,5(5):475-484.
    [12] Graham VS, Di Maggio P, Armengol S, et al.Inhibition of macrophage inflammatory cytokine secretion by chylomicron remnants is dependent on their uptake by the low density lipoprotein receptor.Biochim Biophys Acta, 1,1(3):209-220.
    [13] Cushing EM, Sylvers KL, Chi X, et al.Novel GPIHBP1-independent pathway for clearance of plasma TGs in Angptl4(-/-) Gpihbp1(-/-) mice.J Lipid Res, 8,9(7):1230-1243.
    [14] Davies BS, Beigneux AP, Barnes RH, et al.GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries.Cell Metab, 0,2(1):42-52.
    [15] Rip J, Sierts JA, Vaessen SF, et al.Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice.Atherosclerosis, 7,4(1):55-61.
    [16] Zhang X, Qi R, Xian X, et al.Spontaneous atherosclerosis in aged lipoprotein lipase-deficient mice with severe hypertriglyceridemia on a normal chow diet.Circ Res, 8,2(2):250-256.
    [17] Beigneux AP, Davies BS, Gin P, et al.Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons.Cell Metab, 7,5(4):279-291.
    [18] Goulbourne CN, Gin P, Tatar A, et al.The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries.Cell Metab, 4,9(5):849-860.
    [19] Gin P, Yin L, Davies BS, et al.The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons.J Biol Chem, 8,3(43):29554-29562.
    [20] Gin P, Goulbourne CN, Adeyo O, et al.Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1.Hum Mol Genet, 2,1(13):2961-2972.
    [21] Chen LY, Xia XD, Zhao ZW, et al.MicroRNA-377 inhibits atherosclerosis by regulating triglyceride metabolism through the DNA methyltransferase 1 in apolipoprotein E-knockout mice.Circ J, 8,2(11):2861-2871.
    [22] Henderson H, Leisegang F, Hassan F, et al.A novel Glu421Lys substitution in the lipoprotein lipase gene in pregnancy-induced hypertriglyceridemic pancreatitis.Clin Chim Acta, 8,9(1):1-12.
    [23] Dijk W, Schutte S, Aarts EO, et al.Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue.J Clin Lipidol, 8,2(3):773-783.
    [24] Robciuc MR, Maranghi M, Lahikainen A, et al.Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids.Arterioscler Thromb Vasc Biol, 3,3(7):1706-1713.
    [25] Tikka A, Jauhiainen M.The role of ANGPTL3 in controlling lipoprotein metabolism.Endocrine, 6,2(2):187-193.
    [26] Pisciotta L, Favari E, Magnolo L, et al.Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3.Circ Cardiovasc Genet, 2,5(1):42-50.
    [27] Noto D, Cefalu AB, Valenti V, et al.Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia.Arterioscler Thromb Vasc Biol, 2,2(3):805-809.
    [28] Xu YX, Redon V, Yu H, et al.Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.Atherosclerosis, 8,8:196-206.
    [29] Dewey FE, Gusarova V, Dunbar RL, et al.Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease.N Engl J Med, 7,7(3):211-221.
    [30] Graham MJ, Lee RG, Brandt TA, et al.Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides.N Engl J Med, 7,7(3):222-232.
    [31] Gaudet D, Gipe DA, Pordy R, et al.ANGPTL3 inhibition in homozygous familial hypercholesterolemia.N Engl J Med, 7,7(3):296-297.
    [32] Singh AK, Aryal B, Chaube B, et al.Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis.Mol Metab, 8,1:59-69.
    [33] Puthanveetil P, Wan A, Rodrigues B.Lipoprotein lipase and angiopoietin-like 4-cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease .Crit Rev Clin Lab Sci, 5,2(3):138-149.
    [34] Katano H, Yamada K.Upregulation of ANGPTL4 messenger RNA and protein in severely calcified carotid plaques.J Stroke Cerebrovasc Dis, 4,3(5):933-947.
    [35] Jonker JT, Smit JW, Hammer S, et al.Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes.Am J Clin Nutr, 3,7(2):255-260.
    [36] Zheng T, Ge B, Liu H, et al.Triglyceride-mediated influence of serum angiopoietin-like protein 8 on subclinical atherosclerosis in type 2 diabetic patients:results from the GDMD study in China .Cardiovasc Diabetol, 8,7(1):84.
    [37] Sakurai T, Sakurai A, Vaisman BL, et al.Creation ofapolipoprotein C-Ⅱ (ApoC-Ⅱ) mutant mice and correction of their hypertriglyceridemia with an ApoC-Ⅱ mimetic peptide.J Pharmacol Exp Ther, 6,6(2):341-353.
    [38] Kei AA, Filippatos TD, Tsimihodimos V, et al.A review of the role of apolipoprotein C-Ⅱ in lipoprotein metabolism and cardiovascular disease.Metabolism, 2,1(7):906-921.
    [39] Surendran RP, Visser ME, Heemelaar S, et al.Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia.J Intern Med, 2,2(2):185-196.
    [40] Amar MJ, Sakurai T, Sakurai-Ikuta A, et al.A novel apolipoprotein C-Ⅱ mimetic peptide that activates lipoprotein lipase and decreases serum triglycerides in apolipoprotein E-knockout mice.J Pharmacol Exp Ther, 5,2(2):227-235.
    [41] Qin W, Sundaram M, Wang Y, et al.Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-Ⅲ results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins:evidence that ApoC-Ⅲ plays a major role in the formation of lipid precursors within the microsomal lumen.J Biol Chem, 1,6(31):27769-27780.
    [42] Dallinga-Thie GM, Berk P, Bootsma AH, et al.Atorvastatin decreases apolipoprotein C-Ⅲ in apolipoprotein B-containing lipoprotein and HDL in type 2 diabetes:a potential mechanism to lower plasma triglycerides.Diabetes Care, 4,7(6):1358-1364.
    [43] Chan DC, Nguyen MN, Watts GF, et al.Effects of atorvastatin and n-3 fatty acid supplementation on VLDL apolipoprotein C-Ⅲ kinetics in men with abdominal obesity.Am J Clin Nutr, 0,1(4):900-906.
    [44] Maki KC, Bays HE, Dicklin MR, et al.Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CⅢ, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia.J Clin Lipid, 1,5(6):483-492.
    [45] Norata GD, Tsimikas S, Pirillo A, et al.Apolipoprotein C-Ⅲ:from pathophysiology to pharmacology .Trends Pharmacol Sci, 5,6(10):675-687.
    [46] Malmendier CL, Lontie JF, Delcroix C, et al.Apolipoproteins C-Ⅱ and C-Ⅲ metabolism in hypertriglyceridemic patients.Effect of a drastic triglyceride reduction by combined diet restriction and fenofibrate administration.Atherosclerosis, 9,7(2-3):139-149.
    [47] Nagashima K, Lopez C, Donovan D, et al.Effects of the PPARgamma agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus.J Clin Invest, 5,5(5):1323-1332.
    [48] Graham MJ, Lee RG, Bell TA, et al.Antisense oligonucleotide inhibition of apolipoprotein C-Ⅲ reduces plasma triglycerides in rodents, nonhuman primates, and humans.Circ Res, 3,2(11):1479-1490.
    [49] Burdett H.Antisense inhibition of apolipoprotein C-Ⅲ in patients with hypertriglyceridemia.Ann Clin Biochem, 6,3(3):415.
    [50] Khetarpal SA, Qamar A, Millar JS, et al.Targeting ApoC-Ⅲ to reduce coronary disease risk.Curr Atheroscler Rep, 6,8(9):54.
    [51] Kim M, Kim M, Yoo HJ, et al.Apolipoprotein A5 gene variants are associated with decreased adiponectin levels and increased arterial stiffness in subjects with low high-density lipoprotein-cholesterol levels .Clin Genet, 8,4(5):438-444.
    [52] Vaessen SF, Schaap FG, Kuivenhoven JA, et al.Apolipoprotein A-V, triglycerides and risk of coronary artery disease:the prospective Epic-Norfolk Population Study.J Lipid Res, 6,7(9):2064-2070.
    [53] Shu X, Nelbach L, Weinstein MM, et al.Intravenous injection of apolipoprotein A-V reconstituted high-density lipoprotein decreases hypertriglyceridemia in apoA Ⅴ-/- mice and requires glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1.Arterioscler Thromb Vasc Biol, 0,0(12):2504-2509.
    [54] Oorni K, Lehti S, Sjovall P, et al.Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall.Curr Med Chem, 2018.Doi:10.2174/092986732 5666180530094819.
    [55] Schwartz EA, Reaven PD.Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis.Biochim Biophys Acta, 2,1(5):858-866.
    [56] Lee JY, Zhao L, Youn HS, et al.Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1.J Biol Chem, 4,9(17):16971-16979.
    [57] Wong SW, Kwon MJ, Choi AM, et al.Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner.J Biol Chem, 9,4(40):27384-27392.
    [58] Lehti S, Nguyen D, Belevich I, et al.Extracellular lipid accumulates in human carotid arteries as distinct threedimensional structures with proinflammatory properties.Am J Pathol, 8,8(2):525-538.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIONG Fang, WANG Zongbao, TANG Chaoke. Roles of lipoprotein lipase in triglyceride metabolism and atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2019,27(1):81-86.

Copy
Share
Article Metrics
  • Abstract:1235
  • PDF: 853
  • HTML: 0
  • Cited by: 0
History
  • Received:July 02,2018
  • Revised:December 24,2018
  • Online: January 21,2019
Article QR Code