Adipocyte cholesterol homeostasis and atherosclerosis
Author:
Affiliation:

Department of Pathology & Pathophysiology, Soochow University, Suzhou, Jiangsu 215123, China)

Clc Number:

R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [60]
  • | | | |
  • Comments
    Abstract:

    As an important risk factor for the development of atherosclerosis, the occurrence of obesity is accompanied by changes in cholesterol content and distribution in adipocytes. Cholesterol is an essential component and regulator of lipid rafts in cell membrane. Moreover, it itself is a signaling molecule, which can directly regulate the metabolism and function of adipocytes. The ability of adipocytes to synthesize cholesterol is very limited, so they rely mainly on uptake and flow to regulate cholesterol homeostasis. Recent studies have found that blocking the active efflux of cholesterol on fat cells can inhibit the occurrence of obesity. This article will detailedly describe the cholesterol uptake and efflux pathways of adipocytes, and elucidate the importance of cholesterol homeostasis for adipocytes and the role of adipocyte cholesterol homeostasis in the development of atherosclerosis.

    Reference
    [1] Le Lay S, Ferré P, Dugail I.Adipocyte cholesterol balance in obesity.Biochem Soc Trans, 4,2(Pt 1):103-106.
    [2] Frisdal E, Le Lay S, Hooton H, et al.Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity.Diabetes, 5,4(3):840-855.
    [3] Cuffe H, Liu M, Key CC, et al.Targeted deletion of adipocyte ABCA1 (ATP-binding cassette transporter A1) impairs diet-induced obesity.Arterioscler Thromb Vasc Biol, 8,8(4):733-743.
    [4] Kim TJ, Shin HY, Chang Y, et al.Metabolically healthy obesity and the risk for subclinical atherosclerosis.Atherosclerosis, 7,2:191-197.
    [5] 熊雅明.经胸超声心动图下的心脏外膜脂肪厚度与老年冠心病的相关性分析.中国循证心血管医学杂志, 8,0(1):88-90.
    [6] Izem L, Morton RE.Possible role for intracellular cholesteryl ester transfer protein in adipocyte lipid metabolism and storage.J Biol Chem, 7,2(30):21856-21865.
    [7] Chung S, Cuffe H, Marshall SM, et al.Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys.Arterioscler Thromb Vasc Biol, 4,4(9):1880-1887.
    [8] Hofmann SM, Zhou L, Perez-Tilve D, et al.Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice.J Clin Invest, 7,7(11):3271-3282.
    [9] Roubtsova A, Munkonda MN, Awan Z, et al.Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue.Arterioscler Thromb Vasc Biol, 1,1(4):785-791.
    [10] Tao H, Hajri T.Very low density lipoprotein receptor promotes adipocyte differentiation and mediates the proadipogenic effect of peroxisome proliferator-activated receptor gamma agonists.Biochem Pharmacol, 1,2(12):1950-1962.
    [11] Tao H, Aakula S, Abumrad NN, et al.Peroxisome proliferator-activated receptor-gamma regulates the expression and function of very-low-density lipoprotein receptor.Am J Physiol Endocrinol Metab, 0,8(1):E68-E79.
    [12] Kozak LP, Newman S, Chao PM, et al.The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure.PLoS One, 0,5(6):e11015.
    [13] Gauthier A, Vassiliou G, Benoist F, et al.Adipocyte low density lipoprotein receptor-related protein gene expression and function is regulated by peroxisome proliferator-activated receptor gamma.J Biol Chem, 3,8(14):11945-11953.
    [14] Shen GM, Zhao YZ, Chen MT, et al.Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia.Biochem J, 2,1(2):675-683.
    [15] Castellano J, Aledo R, Sendra J, et al.Hypoxia stimulates low-density lipoprotein receptor-related protein-1 expression through hypoxia-inducible factor-1α in human vascular smooth muscle cells.Arterioscler Thromb Vasc Biol, 1,1(6):1411-1420.
    [16] Yu BL, Zhao SP, Hu JR.Cholesterol imbalance in adipocytes:a possible mechanism of adipocytes dysfunction in obesity.Obes Rev, 0,1(8):560-567.
    [17] Zhong Q, Zhao S, Yu B, et al.High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARγ/CD36 pathway in inflammatory adipocytes.Int J Biol Sci, 5,1(3):256-265.
    [18] Demers A, Samami S, Lauzier B, et al.PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver.Arterioscler Thromb Vasc Biol, 5,5(12):2517-2525.
    [19] Chui PC, Guan HP, Lehrke M, et al.PPAR gamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1.J Clin Invest, 5,5(8):2244-2256.
    [20] Yvan-Charvet L, Bobard A, Bossard P, et al.In vivo evidence for a role of adipose tissue SR-BI in the nutritional and hormonal regulation of adiposity and cholesterol homeostasis.Arterioscler Thromb Vasc Biol, 7,7(6):1340-1345.
    [21] Malerd L, Juvet LK, Hanssen-Bauer A, et al.Oxysterol-activated LXR alpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes.Biochem Biophys Res Commun, 2,9(5):916-923.
    [22] Vassiliou G, McPherson R.A novel efflux-recapture process underlies the mechanism of high-density lipoprotein cholesteryl ester-selective uptake mediated by the low-density lipoprotein receptor-related protein.Arterioscler Thromb Vasc Biol, 4,4(9):1669-1675.
    [23] Zhao Y, Van Berkel TJ, Van Eck M.Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions.Curr Opin Lipidol, 0,1(5):441-453.
    [24] Chung S, Sawyer JK, Gebre AK, et al.Adipose tissue ATP binding cassette transporter A1 contributes to high-density lipoprotein biogenesis in vivo.Circulation, 1,4(15):1663-1672.
    [25] Bencharif K, Hoareau L, Murumalla RK, et al.Effect of apoA-I on cholesterol release and apoE secretion in human mature adipocytes.Lipids Health Dis, 0,9(1):75.
    [26] Zhang Y, McGillicuddy FC, Hinkle CC, et al.Adipocyte modulation of high-density lipoprotein cholesterol.Circulation, 0,1(11):1347-1355.
    [27] Howard AD, Verghese PB, Arrese EL, et al.Characterization of apoA-I-dependent lipid efflux from adipocytes and role of ABCA1.Mol Cell Biochem, 0,3(1-2):115-124.
    [28] Lindahl M, Petrlova J, Dalla-Riva J, et al.ApoA-I Milano stimulates lipolysis in adipose cells independently of cAMP/PKA activation.J Lipid Res, 5,6(12):2248-2259.
    [29] Wei H, Averill MM, McMillen TS, et al.Modulation of adipose tissue lipolysis and body weight by high-density lipoproteins in mice.Nutr Diabetes, 4,4(2):e108.
    [30] Verghese PB, Arrese EL, Soulages JL.Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes.Mol Cell Biochem, 7,2(1-2):241-248.
    [31] Jiang H, Yazdanyar A, Lou B, et al.Adipocyte phospholipid transfer protein and lipoprotein metabolism.Arterioscler Thromb Vasc Biol, 5,5(2):316-322.
    [32] 苑聪, 吴洁, 姜志胜, 等.胰岛素可通过calpain and proteasome 途径促进3T3-L1脂肪细胞三磷酸腺苷结合盒转运体A1的降解.中华心血管病杂志, 5,3(2):141-145.
    [33] Sealls W, Penque BA, Elmendorf JS.Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia--brief report.Arterioscler Thromb Vasc Biol, 1,1(5):1139-1140.
    [34] Icli B, Feinberg MW.MicroRNAs in dysfunctional adipose tissue:cardiovascular implications.Cardiovasc Res, 7,3(9):1024-1034.
    [35] Dong SZ, Zhao SP, Wu ZH, et al.Curcumin promotes cholesterol efflux from adipocytes related to PPAR gamma-LXR alpha-ABCA1 passway.Mol Cell Biochem, 1,8(1-2):281-285.
    [36] Wu ZH, Zhao SP.Niacin promotes cholesterol efflux through stimulation of the PPAR gamma-LXR alpha-ABCA1 pathway in 3T3-L1 adipocytes.Pharmacology, 9,4(5):282-287.
    [37] Shen L, Peng H, Zhao S, et al.A potent soluble epoxide hydrolase inhibitor, t-AUCB, modulates cholesterol balance and oxidized low density lipoprotein metabolism in adipocytes in vitro.Biol Chem, 4,5(4):443-451.
    [38] Zhao SP, Wu ZH, Hong SC, et al.Effect of atorvastatin on SR-BI expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits.Clin Chim Acta, 6,5(1-2):119-124.
    [39] González-Muoz E, López-Iglesias C, Calvo M, et al.Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes.Endocrinology, 9,0(8):3493-3502.
    [40] Briand N, Prado C, Mabilleau G, et al.Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation.Diabetes, 4,3(12):4032-4044.
    [41] Hong S, Huo H, Xu J, et al.Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae.Cell Death Differ, 4,1(7):714-723.
    [42] Shimomura I, Hammer RE, Richardson JA, et al.Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue:model for congenital generalized lipodystrophy.Genes Dev, 8,2(20):3182-3194.
    [43] Korach-André M, Parini P, Larsson L, et al.Separate and overlapping metabolic functions of LXR alpha and LXR beta in C57Bl/6 female mice.Am J Physiol Endocrinol Metab, 0,8(2):E167-E178.
    [44] Korach-André M, Archer A, Barros RP, et al.Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity.Proc Natl Acad Sci USA, 1,8(1):403-408.
    [45] Archer A, Stolarczyk E, Doria ML, et al.LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice.J Lipid Res, 3,4(5):1300-1311.
    [46] Stenson BM, Rydén M, Venteclef N, et al.Liver X receptor (LXR) regulates human adipocyte lipolysis.J Biol Chem, 1,6(1):370-379.
    [47] Huang P, Nedelcu D, Watanabe M, et al.Cellular cholesterol directly activates smoothened in Hedgehog signaling.Cell, 6,6(5):1176-1187.
    [48] Luchetti G, Sircar R, Kong JH, et al.Cholesterol activates the G-protein coupled receptor smoothened to promote Hedgehog signaling.Elife, 6,5:e20304.
    [49] Nachtergaele S, Mydock LK, Krishnan K, et al.Oxysterols are allosteric activators of the oncoprotein smoothened.Nat Chem Biol, 2,8(2):211-220.
    [50] Shi Y, Long F.Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice.Elife, 7,6:e31649.
    [51] Lee HJ, Jo SB, Romer AI, et al.Overweight in mice and enhanced adipogenesis in vitro are associated with lack of the Hedgehog coreceptor boc.Diabetes, 5,4(6):2092-2103.
    [52] Nosavanh L, Yu DH, Jaehnig EJ, et al.Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development.Proc Natl Acad Sci USA, 5,2(16):5069-5074.
    [53] Moisan A, Lee YK, Zhang JD, et al.White-to-brown metabolic conversion of human adipocytes by JAK inhibition.Nat Cell Biol, 5,7(1):57-67.
    [54] van Dam AD, Boon MR, Berbée JFP, et al.Targeting white, brown and perivascular adipose tissue in atherosclerosis development.Eur J Pharmacol, 7,6:82-92.
    [55] Chang L, Villacorta L, Li R, et al.Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis.Circulation, 2,6(9):1067-1078.
    [56] Dong M, Yang X, Lim S, et al.Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis.Cell Metab, 3,8(1):118-129.
    [57] Konaniah ES, Kuhel DG, Basford JE, et al.Deficiency of LRP1 in mature adipocytes promotes diet-induced inflammation and atherosclerosis-brief report.Arterioscler Thromb Vasc Biol, 7,7(6):1046-1049.
    [58] Li X, Zhu M, Penfold ME, et al.Activation of CXCR7 limits atherosclerosis and improves hyperlipidemia by increasing cholesterol uptake in adipose tissue.Circulation, 4,9(11):1244-1253.
    [59] Saraswathi V, Gao L, Morrow JD, et al.Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice.J Nutr, 7,7(7):1776-1782.
    [60] Engin AB.MicroRNA and adipogenesis.Adv Exp Med Biol, 7,0:489-509.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YANG Jinzhi, SUN Xiaodong, DING Fangfang, ZHAO Ying. Adipocyte cholesterol homeostasis and atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2018,26(9):953-960.

Copy
Share
Article Metrics
  • Abstract:1626
  • PDF: 760
  • HTML: 0
  • Cited by: 0
History
  • Received:May 02,2018
  • Revised:June 11,2018
  • Online: October 16,2018
Article QR Code