The Warburg effect of vessel wall in atherosclerosis
Author:
Affiliation:

Institute of Neuroscience & Department of Physiology, Medical College, University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • | | | |
  • Comments
    Abstract:

    Atherosclerosis (As) is a kind of chronic inflammatory disease, which characterized by the deposition of lipid in vessel wall. Chronic inflammation of vascular wall induced by As factors plays an important role in the pathophysiological process of the disease. The reprogramming of energy metabolism of monocytes/macrophages is closely related to the occurrence and development of As. Warburg effect is an important way of cell energy metabolism. This effect may be involved in some pathological processes of As, such as vascular smooth muscle proliferation, endothelial cell dysfunction, and inflammation. This article reviews the Warburg effect of the vascular wall in As.

    Reference
    [1] Chen Z, Liu M, Li L, et al.Involvement of the Warburg effect in non-tumor diseases processes.J Cell Physiol, 8,3(4):2 839-849.
    [2] Sliwowski A.Aerobic glycolysis in atherosclerosis.Acta Medica Polona, 9,0(3):249-261.
    [3] Warburg O.On the origin of cancer cells.Science, 6,3(3191):309-314.
    [4] 王可, 王芳, 余红秀.免疫细胞的代谢重编程及其对免疫功能的影响.现代免疫学, 7,7(2):146-151.
    [5] Sarrazy V, Viaud M, Westerterp M, et al.Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE-/- mice.Circ Res, 6,8(7):1 062-077.
    [6] Yamashita A, Zhao Y, Matsuura Y, et al.Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.PLoS One, 4,9(1):e86 426.
    [7] Cheng SC, Quintin J, Cramer RA, et al.mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity.Science, 4,5(6204):1 250 684.
    [8] Schuster S, Boley D, Moller P, et al.Mathematical models for explaining the Warburg effect:a review focussed on ATP and biomass production.Biochem Soc Trans, 5,3(6):1 187-194.
    [9] Lunt SY, Vander Heiden MG.Aerobic glycolysis:meeting the metabolic requirements of cell proliferation.Annu Rev Cell Dev Bi, 1,7(1):441-464.
    [10] Courtnay R, Ngo DC, Malik N, et al.Cancer metabolism and the Warburg effect:the role of HIF-1 and PI3K.Mol Biol Rep, 5,2(4):841-851.
    [11] Dandapani M, Hardie DG.AMPK:opposing the metabolic changes in both tumour cells and inflammatory cells?.Biochem Soc Trans, 3,1(2):687-693.
    [12] Rath M, Muller I, Kropf P, et al.Metabolism via arginase or nitric oxide synthase:Two competing arginine pathways in macrophages.Front Immunol, 4,5:532.
    [13] Tannahill GM, Curtis AM, Adamik J, et al.Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha.Nature, 3,6(7444):238-242.
    [14] 赵清杰, 朱琳楠, 丁文军, 等.巨噬细胞极化与细胞代谢的相互调控.细胞与分子免疫学杂志, 5,1(3):408-411.
    [15] Aarup A, Pedersen TX, Junker N, et al.Hypoxia-inducible factor-1 alpha expression in macrophages promotes development of atherosclerosis.Arterioscler Thromb Vasc Biol, 6,6(9):1 782-790.
    [16] Folco EJ, Sheikine Y, Rocha VZ, et al.Hypoxia but not inflammation augments glucose uptake in human macrophages:Implications for imaging atherosclerosis with 18 fluorine-labeled 2-deoxy-D-glucose positron emission tomography.J Am Coll Cardiol, 1,8(6):603-614.
    [17] Semba H, Takeda N, Isagawa T, et al.HIF-1 alpha-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity.Nat Commun, 6,7:11635.
    [18] Robbins CS, Hilgendorf I, Weber GF, et al.Local proliferation dominates lesional macrophage accumulation in atherosclerosis.Nat Med, 3,9(9):1 166-172.
    [19] Bekkering S, van den Munckhof I, Nielen T, et al.Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo.Atherosclerosis, 6,4:228-236.
    [20] Shirai T, Nazarewicz RR, Wallis BB, et al.The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease.J Exp Med, 6,3(3):337-354.
    [21] Murphy AJ, Akhtari M, Tolani S, et al.ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice.J Clin Invest, 1,1(10):4 138-149.
    [22] Gautier EL, Westerterp M, Bhagwat N, et al.HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders.J Exp Med, 3,0(2):339-353.
    [23] Krawczyk CM, Holowka T, Sun J, et al.Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation.Blood, 0,5(23):4 742-749.
    [24] Doran AC, Lipinski MJ, Oldham SN, et al.B-cell aortic homing and atheroprotection depend on Id3.Circ Res, 2,0(1):e1-e12.
    [25] Caro-Maldonado A, Wang R, Nichols AG, et al.Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells.J Immunol, 4,2(8):3 626-636.
    [26] Palmer CS, Ostrowski M, Balderson B, et al.Glucose metabolism regulates T cell activation, differentiation, and functions.Front Immunol, 5,6:1.
    [27] Patel CH, Powell JD.Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease.Curr Opin Immunol, 7,6:82-88.
    [28] Macintyre AN, Gerriets VA, Nichols AG, et al.The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function.Cell Metab, 4,0(1):61-72.
    [29] Makita N, Ishiguro J, Suzuki K, et al.Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism.J Pharm Pharmacol, 7,9(1):43-51.
    [30] Shi LZ, Wang R, Huang G, et al.HIF1 alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells.J Exp Med, 1,8(7):1 367-376.
    [31] Gerriets VA, Kishton RJ, Johnson MO, et al.Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression.Nat Immunol, 6,7(12):1 459-466.
    [32] Chang CH, Curtis JD, Maggi LB Jr.et al.Posttranscriptional control of T cell effector function by aerobic glycolysis.Cell, 3,3(6):1 239-251.
    [33] Peng M, Yin N, Chhangawala S, et al.Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.Science, 6,4(6311):481-484.
    [34] Ross JS, Stagliano NE, Donovan MJ, et al.Atherosclerosis:a cancer of the blood vessels?.Am J Clin Pathol, 1,6(Suppl):S97-S107.
    [35] Chiong M, Morales P, Torres G, et al.Influence of glucose metabolism on vascular smooth muscle cell proliferation.VASA Zeitschrift fur Gefasskrankheiten, 3,2(1):8-16.
    [36] Xiao Y, Peng H, Hong C, et al.PDGF promotes the Warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/AKT/mTOR/HIF-1 alpha signaling pathway.Cell Physiol Biochem, 7,2(4):1 603-613.
    [37] Weinhouse S.The Warburg hypothesis fifty years later.Z Krebsforsch Klin Onkol Cancer Res Clin Oncol, 6,7(2):115-126.
    [38] Kim JH, Bae KH, Byun JK, et al.Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration.Biochem Bioph Res Co, 7,2(1):41-47.
    [39] Pircher A, Treps L, Bodrug N, et al.Endothelial cell metabolism:A novel player in atherosclerosis?--Basic principles and therapeutic opportunities.Atherosclerosis, 6,3:247-257.
    [40] Xu RH, Liu B, Wu JD, et al.miR-143 is involved in endothelial cell dysfunction through suppression of glycolysis and correlated with atherosclerotic plaques formation.Eur Rev Med Pharmacol Sci, 6,0(19):4 063-071.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TIAN Qing, GU Hong-Feng, TANG Xiao-Qing. The Warburg effect of vessel wall in atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2018,26(5):536-540.

Copy
Share
Article Metrics
  • Abstract:1926
  • PDF: 806
  • HTML: 0
  • Cited by: 0
History
  • Received:January 25,2018
  • Revised:April 02,2018
  • Online: May 31,2018
Article QR Code