MicroRNA that involves the negative regulation of reverse cholesterol transport
Author:
Affiliation:

1.Affiliated Nanhua Hospital, ;2.Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • | | | |
  • Comments
    Abstract:

    Strengthening the reverse cholesterol transport (RCT) has the anti-atherosclerotic effect. MicroRNA (miRNA) involves the regulation of many biological processes. Recent studies suggest that miRNA can control the ATP binding cassette transporter A1(ABCA1) and scavenger receptor class B type Ⅰ (SR-B Ⅰ) that belong to the critical protein of RCT. Currently, it has been found that many miRNAs can inhibit the levels of SR-B Ⅰ and ABCA1 protein expression, and then inhibiting the cholesterol efflux. This paper summarizes the miRNA that involves the negative regulation of RCT.

    Reference
    [1] Lusisa J.Atherosclerosis.Nature, 0,7(6801):233-241.
    [2] Reimann C, Brangsch J, Colletini F, et al.Molecular imaging of the extracellular matrix in the context of atherosclerosis.Adv Drug Deliv Rev, 7,3:49-60.
    [3] Koldamovn R, Fitzn F, Lefterov I.ATP-binding cassette transporter A1:from metabolism to neurodegeneration.Neurobiol Dis, 4,2:13-21.
    [4] Robins SJ, Fasulo JM.High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile.J Clin Invest, 7,9:380-384.
    [5] Haray LM, Frisdal LE,Goff W.Critical role of the human ATP-binding cassette G1 transporter in cardiometabolic diseases.Int J Mol Sci, 7,8(9):e1892.
    [6] Qin L, Zhu N, Ao BX, et al.Caveolae and caveolin-1 integrate reverse cholesterol transport and inflammation in atherosclerosis.Int J Mol Sci, 6,7(3):429.
    [7] Moore KJ, Rayner KJ, Suarez Y, et al.The role of microRNAs in cholesterol efflux and hepatic lipid metabolism.Annu Rev Nutr, 1,1:49-63.
    [8] Danilo C,Gutierrez-Pajares JL, Mainieri MA, et al.Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development.3,5(5):R87.
    [9] Kocher O, Yesilaltay A, CirovicI C, et al.Targeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism.J Biol Chem, 3,8(52):52 820-825.
    [10] Canfrán-Duque A, Ramírez CM, Goedeke L, et al.microRNAs and HDL life cycle.Cardiovasc Res, 4,3(3):414-422.
    [11] Calvo D, Dopazo J, Vega, MA.The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family:cellular distribution, chromosomal location, and genetic evolution.Genomics,5,5(1):100-106.
    [12] Rhainds D, Brissette L.The role of scavenger receptor class B type I (SR-BⅠ) in lipid trafficking .Int J Biochem Cell Biol, 4,6(1):39-77.
    [13] Cao G, Garcia CK, Wyne KL.Structure and localization of the human gene encoding SR-BⅠ/CLA-1.J Biol Chem,7,2(52):33 068-076.
    [14] Braissat O, Wahli W.Differential expression of peroxisome proliferator-activated receptor-α, -β, and -γ during rat embryonic development.Endocrinology, 8,9:2 748-754.
    [15] Gutierrez-Pajares JL, Hassen BC, Chevalier S, et al.SR-BⅠ:Linking cholesterol and lipoprotein metabolism with breast and prostate cancer.Front Pharmacol, 6,7:338.
    [16] Chinetti G, Gbaguidi FG, Griglio S, et al.CLA-1/SR-BⅠ is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors.Circulation, 0,1(20):2 411-417.
    [17] WiersmaI H, Gatti A, Nijstad N, et al.Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter G5/G8 in mice.Hepatology, 9,0(4):1 263-272.
    [18] Lee J, Park Y, Koo SI.ATP-binding cassette transporter A1 and HDL metabolism:effects of fatty acids.J Nutr Biochem, 2,3(1):1-7.
    [19] Costet P, Luo Y, Wang N, et al.Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor.J Biol Chem, 0,5(36):28 240-245.
    [20] Wang SH, Smith JD.ABCA1 and nascent HDL biogenesis.Biofactors, 4,0(6):547-554.
    [21] Bechor S, Relevy NZ, Harari A, et al.9-cis beta-carotene increased cholesterol efflux to HDL in macrophages.Nutrients, 6,8(7):e435.
    [22] Rottiers V, Naar AM.MicroRNAs in metabolism and metabolic disorders.Nat Rev Mol Cell Biol, 2,3(4):239-250.
    [23] Horie T, Baba O, Kuwabara Y, et al.MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice.J Am Heart Assoc, 2,1(6):e003376.
    [24] Wagschal A, Najafi-Shoushtari SH, Wang L, et al.Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.Nature Medicine, 5,1(11):1 290-297.
    [25] Goedeke L, Rotllan N, Canfran-Duque A, et al.MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.Nat Med, 5,1(11):1 280-289.
    [26] Meiler S, Baumer Y, Toulmin E, et al.MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.Arterioscler Thromb Vasc Biol, 5,5(2):323-331.
    [27] Aryal B, Singh AK, RotllanO N, et al.MicroRNAs and lipid metabolism.Curr OpinLipidol, 7,8(3):273-280.
    [28] Li YJ, Ping C, Tang J, et al.MicroRNA-455 suppresses non-small cell lung cancer through targeting ZEB1.Cell Biol Int, 6,0(6):621-628.
    [29] Gerin I, Clerbaux LA, Haumont O, et al.Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation.J Biol Chem, 0,5(44):33 652-661.
    [30] Rooij EV.The art of microRNA research.Circ Res, 1,8(2):219-234.
    [31] Behm-Ansmant I, Rehwinkel J, Izaurralde E.MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay.Cold Spring Harb Symp Quant Biol, 6,1:523-530.
    [32] Kang MH, Zhang LH, WijesekaraI N, et al.Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145.Arterioscler Thromb Vasc Biol, 3,3(12):2 724-732.
    [33] Sun D, Zhang J, Xie J, et al.MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7.FEBS Lett, 2,6(10):1 472-479.
    [34] Wang D, Xia M, Yan X, et al.Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b.Circ Res, 2,1(8):967-981.
    [35] de Aguiar Vallim TQ, Tarling EJ, Kim T.MicroRNA-144 regulates hepatic ABCA1 and plasma HDL after activation of the nuclear receptor FXR.Circ Res, 3,2(12):1 602-612.
    [36] Ramírez CM, Rotllan N, Vlassov AV, et al.Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.Circ Res, 3,2(12):1 592-601.
    [37] Hu Z, Shen WJ, Kraemer FB, et al.MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells.Mol Cell Biol, 2,2(24):5 035-045.
    [38] Wang L, Jia XJ, Jiang HJ, et al.MicroRNAs 5,6, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition.Mol Cell Biol, 3,3(10):1 956-964.
    [39] Liu J, Liu XQ, Liu Y, et al.MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2.Mol Med Rep, 6,3(1):433-440.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIANG Bo, LI Dan, LIU Ya-Mi, WANG Zuo, MA Xiao-Feng. MicroRNA that involves the negative regulation of reverse cholesterol transport[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2018,26(3):321-324.

Copy
Share
Article Metrics
  • Abstract:1054
  • PDF: 831
  • HTML: 0
  • Cited by: 0
History
  • Received:September 01,2017
  • Revised:December 06,2017
  • Online: April 03,2018
Article QR Code