Cardiac regeneration:cardiomyocyte proliferation and direct transdifferentiation from somatic cells
Author:
Affiliation:

Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China)

Clc Number:

R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • | | | |
  • Comments
    Abstract:

    Cardiac regeneration is an important approache for treatment of myocardial infarction and recovery of heart function. The key issue to cardiac regeneration is increasing the number of cardiomyocytes. Up-to-date, increasing studies have revealed that the cell resource of regenerated cardiomyocytes mainly involves three aspects:proliferated cardiomyocytes (cardiomyocytes reentering the cell cycle, activating mitosis procedure), direct reprogramming of somatic cell (cells transdifferentiated into cardiomyocytes directly), directional differentiation based on stem cells. Although stirring progress in the above 3 aspects has been gained, there are still many problems to be solved.

    Reference
    [1] Braunwald E.The war against heart failure:the Lancet lecture.Lancet, 5,5(9970):812-824.
    [2] Graham E, Bergmann O.Dating the heart:Exploring cardiomyocyte renewal in humans.Physiology (Bethesda), 7,2(1):33-41.
    [3] Mahmoud AI.Meis1 regulates postnatal cardiomyocyte cell cycle arrest.Nature, 3,7:249-253.
    [4] Qian L, Huang Y, Spencer CI, et al.In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.Nature, 2,5(7400):593-598.
    [5] Terzic A, Behfar A.Stem cell therapy for heart failure:Ensuring regenerative proficiency.Trends Cardiovasc Med, 6,6(5):395-404.
    [6] Becker RO, Chapin S, Sherry R.Regeneration of the ventricular myocardium in amphibians.Nature, 4,8(5444):145-147.
    [7] Choi Y, Meng F, Cox CS, et al.Regeneration and regrowth potentials of digit tips in amphibians and mammals.Int J Cell Biol, 7,7:5312951.
    [8] Poss KD, Wilson LG, Keating MT.Heart regeneration in zebrafish.Science, 2,8(5601):2 188-190.
    [9] Porrello ER, Mahmoud AI, Simpson E, et al.Transient regenerative potential of the neonatal mouse heart.Science, 1,1(6020):1 078-080.
    [10] Soonpaa MH, Kim KK, Pajak L, et al.Cardiomyocyte DNA synthesis and binucleation during murine development.Am J Physiol, 6,1(5 Pt 2):H2 183-189.
    [11] Naqvi N, Li M, Calvert JW, et al.A proliferative burst during preadolescence establishes the final cardiomyocyte number.Cell, 4,7(4):795-807.
    [12] Kimura W, Xiao F, Canseco DC, et al.Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart.Nature, 5,3(7559):226-230.
    [13] Nakada Y, Canseco DC, Thet S, et al.Hypoxia induces heart regeneration in adult mice.Nature, 7,1(7636):222-227.
    [14] Bergmann O, Bhardwaj RD, Bernard S, et al.Evidence for cardiomyocyte renewal in humans.Science, 9,4(5923):98-102.
    [15] Kajstura J, Urbanek K, Perl S, et al.Cardiomyogenesis in the adult human heart.Circ Res, 0,7(2):305-315.
    [16] Morikawa Y, Heallen T, Leach J, et al.Dystrophin glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation.Nature, 7,7(7662):227-231.
    [17] Bassat E, Mutlak YE, Genzelinakh A, et al.The extracellular matrix protein agrin promotes heart regeneration in mice.Nature, 7,7(7662):179-184.
    [18] Tian Y, Liu Y, Wang T, et al.A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice.Sci Transl Med, 5,7(279):279ra38.
    [19] Eulalio A, Mano M, Dal Ferro M, et al.Functional screening identifies miRNAs inducing cardiac regeneration.Nature, 2,2(7429):376-381.
    [20] Frangogiannis NG.Inflammation in cardiac injury, repair and regeneration.Curr Opin Cardiol, 5,0(3):240-245.
    [21] Aurora AB, Porrello ER, Tan W, et al.Macrophages are required for neonatal heart regeneration.J Clin Invest, 4,4(3):1 382-392.
    [22] Mysliwiec MR, Carlson CD, Tietjen J, et al.Jarid2 (Jumonji, AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart.J Biol Chem, 2,7(2):1 235-241.
    [23] Chang AC, Ong SG, LaGory EL, et al.Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy.Proc Natl Acad Sci USA, 6,3(46):13 120-125.
    [24] Aix E, Gutierrez-Gutierrez O, Sanchez-Ferrer C, et al.Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation.J Cell Biol, 6,3(5):571-583.
    [25] Zebrowski DC, Vergarajauregui S, Wu CC, et al.Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.Elife, 5,4, DOI:10.7554/eLife.05563.
    [26] Puente BN.The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response.Cell, 4,7:565-579.
    [27] Ieda M, Fu JD, Delgado-Olguin P, et al.Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell, 0,2(3):375-386.
    [28] Patel V, Mathison M, Singh VP, et al.Direct cardiac cellular reprogramming for cardiac regeneration.Curr Treat Options Cardiovasc Med, 6,8(9):58.
    [29] Song K, Nam YJ, Luo X, et al.Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature, 2,5(7400):599-604.
    [30] Addis RC, Ifkovits JL, Pinto F, et al.Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.J Mol Cell Cardiol, 3,0:97-106.
    [31] Nam YJ, Lubczyk C, Bhakta M, et al.Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors.Development, 4,1(22):4 267-278.
    [32] Jayawardena TM, Egemnazarov B, Finch EA, et al.MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes.Circ Res, 2,0(11):1 465-473.
    [33] Muraoka N, Yamakawa H, Miyamoto K, et al.MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J, 4,3(14):1 565-581.
    [34] Hou P, Li Y, Zhang X, et al.Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Science, 3,1(6146):651-654.
    [35] Huangfu D, Maehr R, Guo W, et al.Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.Nat Biotechnol, 8,6(7):795-797.
    [36] Long Y, Wang M, Gu H, et al.Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells.Cell Res, 5,5(10):1 171-174.
    [37] Cheng L, Hu W, Qiu B, et al.Generation of neural progenitor cells by chemical cocktails and hypoxia.Cell Res, 4,4(6):665-679.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Kang-Kai, XIAO Xian-Zhong. Cardiac regeneration:cardiomyocyte proliferation and direct transdifferentiation from somatic cells[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2017,25(10):973-977.

Copy
Share
Article Metrics
  • Abstract:1233
  • PDF: 900
  • HTML: 0
  • Cited by: 0
History
  • Received:September 02,2017
  • Revised:September 10,2017
  • Online: November 28,2017
Article QR Code