Advances in the application of nanomedicine for the diagnosis and treatment of cardiovascular diseases
Author:
Affiliation:

Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi’an Medical University, Xi’an, Shaanxi 710021, China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [67]
  • | | | |
  • Comments
    Abstract:

    Cardiovascular disease is a serious threat to human life and health with accounting for more than 40% of the disease deaths in China, and its incidence has a tendency to rise. Therefore, it is important to develop new technologies and methods for the diagnosis and treatment of cardiovascular diseases. Nanotechnology is a novel discipline developed in this century, and it has brought new ideas and new methods together with the modern medicine, which established nanomedicine for the diagnosis and treatment of cardiovascular diseases, and with unique methods, it has already achieved a great significance in cardiovascular researches. This review focuses on recent advances in nanomedicine for the diagnosis and treatment of cardiovascular diseases.

    Reference
    [1] 陈伟伟, 高润霖, 刘力生, 等.中国心血管病报告2015概要.中国循环杂志, 6,1(6):521-528.
    [2] Cheng Z, Al Zaki A, Hui JZ, et al.Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities.Science, 2,8(6109):903-910.
    [3] Kim B, Rutka JT, Chan WC.Nanomedicine.N Engl J Med, 2010(363):2 434-443.
    [4] Allen TM, Cullis PR.Drug delivery systems:entering the mainstream.Science, 4,3(5665):1 818-822.
    [5] Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al.Nanoparticles as drug delivery systems.Pharmacol Rep, 2,4(5):1 020-037.
    [6] Cho K, Wang X, Nie S, et al.Therapeutic nanoparticles for drug delivery in cancer.Clin Cancer Res, 8,4(5):1 310-316.
    [7] Behera A, Patil S, Sahoo S.Nanosizing of drugs:A promising approach for drug delivery.Der Pharmacia Sinica, 0,1(1):20-28.
    [8] Schutz CA, Juillerat-Jeanneret L, Mueller H, et al.Therapeutic nanoparticles in clinics and under clinical evaluation.Nanomedicine, 3,8(3):449-467.
    [9] Wang AZ, Langer R, Farokhzad OC.Nanoparticle delivery of cancer drugs.Annu Rev Med, 2,3:185-198.
    [10] Kumari A, Yadav SK, Yadav SC.Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf B Biointerfaces, 0,5(1):1-18.
    [11] Dinarvand R, Sepehri N, Manoochehri S, et al.Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents.Int J Nanomedicine, 1,6:877-895.
    [12] Holback H, Yeo Y.Intratumoral drug delivery with nanoparticulate carriers.Pharm Res, 1,8(8):1 819-830.
    [13] Loomis K, McNeeley K, Bellamkonda RV.Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications.Soft Matter, 1,7(3):839-856.
    [14] Torchilin V.Tumor delivery of macromolecular drugs based on the EPR effect.Adv Drug Deliv Rev, 1,3(3):131-135.
    [15] Maeda H, Nakamura H, Fang J.The EPR effect for macromolecular drug delivery to solid tumors:Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv Drug Deliv Rev, 3,5(1):71-79.
    [16] Flogel U, Ding Z, Hardung H, et al.In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging.Circulation, 8,8(2):140-148.
    [17] Lee D, Lockey R, Mohapatra S.Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans.J Nanosci Nanotechnol, 6,6(9-1):2 860-866.
    [18] Gullotti E, Yeo Y.Extracellularly activated nanocarriers:a new paradigm of tumor targeted drug delivery.Mol Pharm, 9,6(4):1 041-051.
    [19] Glass CK, Witztum JL.Atherosclerosis:the road ahead.Cell, 1,4(4):503-516.
    [20] Rensen S, Doevendans P, Van Eys G.Regulation and characteristics of vascular smooth muscle cell phenotypic diversity.Neth Heart J, 7,5(3):100-108.
    [21] Abouhamed M, Reichenberg S, Robenek H, et al.Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis.Eur J Cell Biol, 3,2(9):473-482.
    [22] Gallant C, Appel S, Graceffa P, et al.Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells.Am J Physiol Cell Physiol, 1,0(6):C1 356-365.
    [23] 尚安松, 马占龙, 陈相汛, 等.原肌球蛋白-4 抗体靶向标记合成型血管平滑肌细胞 MRI 体外成像的实验研究.中华放射学杂志, 3,7(12):1 132-138.
    [24] Charoenphol P, Mocherla S, Bouis D, et al.Targeting therapeutics to the vascular wall in atherosclerosis:arrier size matters.Atherosclerosis, 1,7(2):364-370.
    [25] McCarthy JR.Multifunctional agents for concurrent imaging and therapy in cardiovascular disease.Adv Drug Deliv Rev, 0,2(11):1 023-030.
    [26] Sinusas AJ, Bengel F, Nahrendorf M, et al.Multimodality cardiovascular molecular imaging, part I.Circ Cardiovasc Imaging, 8,1(3):244-256.
    [27] Elsabahy M, Heo GS, Lim S-M, et al.Polymeric nanostructures for imaging and therapy.Chem Rev, 5,5(19):10 967-11 011.
    [28] Lobatto ME, Fuster V, Fayad ZA, et al.Perspectives and opportunities for nanomedicine in the management of atherosclerosis.Nat Rev Drug Discov, 1,0(11):835-852.
    [29] Quillard T, Libby P.Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development.Circ Res, 2,1(2):231-244.
    [30] Lanza GM, Wallace KD, Scott MJ, et al.A novel site-targeted ultrasonic contrast agent with broad biomedical application.Circulation, 6,4(12):3 334-340.
    [31] Lanza GM, Wallace KD, Fischer SE,et al.High-frequency ultrasonic detection of thrombi with a targeted contrast system.Ultrasound Med Biol, 7,3(6):863-870.
    [32] Demos SM, Alkan-Onyuksel H, Kane BJ, et al.In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement.J Am Coll Cardiol, 9,3(3):867-875.
    [33] Weissleder R, Lee AS, Khaw BA,et al.Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct:MR antibody imaging.Radiology, 2,2(2):381-385.
    [34] Liu H, Zhao WO, Huang HL, et al.Synthesis and Characterization of Magnetic Nanoparticles Targeting for MPO.Acta polymerica sinica, 2015, (3):331-337.
    [35] Nishigori K, Temma T, Yoda K, et al.Radioiodinated peptide probe for selective detection of oxidized low density lipoprotein in atherosclerotic plaques.Nucl Med Biol, 3,0(1):97-103.
    [36] Kang S, Lee HW, Jeon YH, et al.Combined fluorescence and magnetic resonance imaging of primary macrophage migration to sites of acute inflammation using near-infrared fluorescent magnetic nanoparticles.Mol Imaging Biol, 5,7(5):643-651.
    [37] Sosnovik DE, Nahrendorf M, Deliolanis N, et al.Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo.Circulation, 7,5(11):1 384-391.
    [38] Chen N, Shao C, Li S, et al.Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.J Colloid Interface Sci, 5,7:27-34.
    [39] Shi Y, Pan Y, Zhong J, et al.Facile synthesis of gadolinium (Ⅲ) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging.Carbon, 5,3:742-750.
    [40] Bruckman MA, Jiang K, Simpson EJ, et al.Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus.Nano letters, 4,4(3):1 551-558.
    [41] McCarthy JR, Korngold E, Weissleder R, et al.A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis.Small, 0,6(18):2 041-049.
    [42] Peters D, Kastantin M, Kotamraju VR, et al.Targeting atherosclerosis by using modular, multifunctional micelles.Proc Natl Acad Sci U S A, 9,6(24):9 815-819.
    [43] Lanza GM, Yu X, Winter PM, et al.Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent.Circulation, 2,6(22):2 842-847.
    [44] Chan JM, Zhang L, Tong R, et al.Spatiotemporal controlled delivery of nanoparticles to injured vasculature.Proc Natl Acad Sci U S A, 0,7(5):2 213-218.
    [45] Freitas F, Diament J.Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions.Int J Nanomedicine, 1,6:2 297-304.
    [46] Lee GY, Kim JH, Oh GT, et al.Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand.J Control Release, 1,5(2):211-217.
    [47] Iverson NM, Plourde NM, Sparks SM, et al.Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation.Biomaterials, 1,2(32):8 319-327.
    [48] Lobatto ME, Fayad ZA, Silvera S, et al.Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis.Mol Pharm, 0,7(6):2 020-029.
    [49] Zhao Y, Imura T, Leman LJ, et al.Mimicry of high-density lipoprotein:functional peptide-lipid nanoparticles based on multivalent peptide constructs.J Am Chem Soc, 3,5(36):13 414-424.
    [50] Winter PM, Neubauer AM, Caruthers SD, et al.Endothelial ανβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis.Arterioscler Thromb Vasc Biol, 6,6(9):2 103-109.
    [51] Broz P, Ben-Haim N, Grzelakowski M, et al.Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin.J Cardiovasc Pharmacol, 8,1(3):246-252.
    [52] Rachmawati H, Soraya IS, Kurniati NF, et al.In vitro study on antihypertensive and antihypercholesterolemic effects of a curcumin nanoemulsion.Sci Pharm, 6,4(1):131-140.
    [53] Kumar VV, Chandrasekar D, Ramakrishna S, et al.Development and evaluation of nitrendipine loaded solid lipid nanoparticles:influence of wax and glyceride lipids on plasma pharmacokinetics.Int J Pharm, 7,5(1):167-175.
    [54] Gautam SP, Verma A.PAMAM dendrimers:novel polymeric nanoarchitectures for solubility enhancement of candesartan cilexetil.Research Gate:Pharmaceutical Sciences, 2,1:1-4.
    [55] Bajaj A, Rao MR, Pardeshi A, et al.Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan.AAPS Pharm Sci Tech, 2,3(4):1 331-340.
    [56] Cabrales P, Han G, Roche C, et al.Sustained release nitric oxide from long-lived circulating nanoparticles.Free Rad Biol Med, 0,9(4):530-538.
    [57] Chang MY, Yang YJ, Chang CH, et al.Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction.J Control Release, 3,0(2):287-294.
    [58] Kim D, Hong J, Moon HH, et al.Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia-reperfusion injury:use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier.J Control release, 3,8(2):125-134.
    [59] Takahama H, Minamino T, Asanuma H, et al.Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats.J Am Coll Cardiol, 9,3(8):709-717.
    [60] Leuschner F, Dutta P, Gorbatov R, et al.Therapeutic siRNA silencing in inflammatory monocytes in mice.Nat Biotechnol, 1,9(11):1 005-010.
    [61] Scott RC, Rosano JM, Ivanov Z, et al.Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function.FASEB J, 9,3(10):3 361-367.
    [62] Torchilin VP.Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat Rev Drug Discov, 4,3(11):813-827.
    [63] Cicha I.Thrombosis:Novel nanomedical concepts of diagnosis and treatment.World J Cardiol, 5,7(8):434.
    [64] Myerson J, He L, Lanza G, et al.Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis.J Thromb Haemost, 1,9(7):1 292-300.
    [65] Vani JR, Mohammadi MT, Foroshani MS, et al.Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke.EXCLI J, 6,5:378.
    [66] Panagiotou S, Saha S.Therapeutic benefits of nanoparticles in stroke.Front Neurosci, 5,9:182.
    [67] Evans BC, Hocking KM, Kilchrist KV, et al.Endosomolytic nano-polyplex platform technology for cytosolic peptide delivery to inhibit pathological vasoconstriction.ACS Nano, 5,9(6):5 893-907.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Ke, XU Cang-Bao. Advances in the application of nanomedicine for the diagnosis and treatment of cardiovascular diseases[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2017,25(8):757-763.

Copy
Share
Article Metrics
  • Abstract:1495
  • PDF: 1451
  • HTML: 0
  • Cited by: 0
History
  • Received:May 31,2017
  • Revised:June 06,2017
  • Online: July 12,2017
Article QR Code