Interaction and regulation of cell inflammation and lipid metabolism
Author:
Affiliation:

Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)

Clc Number:

R966

  • Article
  • | |
  • Metrics
  • |
  • Reference [63]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    The effect of cell inflammation and lipid metabolism on atherosclerosis development was reviewed. Imbalance of lipid metabolism resulted in inflammation. Abnormal modification and location of lipoprotein promoted inflammation. Lipid metabolism disorders induced inflammation by monocytes, M1 / M2 drift, and NLRP-3 inflammasomes.At the same time, inflammation promoted the lipid uptake and accumulation, and inhibited the cholesterol efflux from cell.Inflammation and imbalance of lipid metabolism jointly promoted the developement of atherosclerosis. We discussed the role of caveolae/ caveolin, NF-κB pathway, and PPAR pathway in the interaction and regulation of cell inflammation and lipid metabolism.

    Reference
    [1] Bck M, Hansson GK.Anti-inflammatory therapies for atherosclerosis .Nat Rev Cardiol, 5,2(4): 199-211.
    [2] Ross R.Atherosclerosis--an inflammatory disease .N Engl J Med, 9,0(2): 115-126.
    [3] Duewell P, Kono H, Rayner KJ, et al.NLRP-3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature, 0,4(7293): 1 357-361.
    [4] Tabas I.Macrophage death and defective inflammation resolution in atherosclerosis .Nat Rev Immunol, 0,0(1): 36-46.
    [5] Glass CK, Olefsky JM.Inflammation and lipid signaling in the etiology of insulin resistance .Cell Metab, 2,5(5): 635-645.
    [6] Moore KJ, Tabas I.Macrophages in the pathogenesis of atherosclerosis .Cell, 1,5(3): 341-355.
    [7] Ridker PM, Danielson E, Fonseca FA, et al.Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein .N Engl J Med, 8,9(21): 2 195-207.
    [8] Azzam KM, Fessler MB.Crosstalk between reverse cholesterol transport and innate immunity .Trends Endocrinol Metab, 2,3(4): 169-178.
    [9] Sun Y, Ishibashi M, Seimon T, et al.Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K.Circ Res, 9,4(4): 455-465.
    [10] Gora S, Maouche S, Atout R, et al.Phospholipolyzed LDL induces an inflammatory response in endothelial cells through endoplasmic reticulum stress signaling.FASEB J, 0,4(9): 3 284-297.
    [11] Stewart CR, Stuart LM, Wilkinson K, et al.CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer.Nat Immunol, 0,1(2): 155-161.
    [12] Song GJ, Kim SM, Park KH, et al.SR-BⅠ mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages.Biochem Biophys Res Commun, 5,7(1): 112-118.
    [13] Yvan-Charvet L, Wang N, Tall AR.Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses .Arterioscler Thromb Vasc Biol, 0,0(2): 139-143.
    [14] Carpintero R, Gruaz L, Brandt KJ, et al.HDL interfere with the binding of T cell microparticles to human monocytes to inhibit pro-inflammatory cytokine production .PLoS One, 0,5(7): e11 869.
    [15] Puranik R, Bao S, Nobecourt E, et al.Low dose apolipoprotein A-I rescues carotid arteries from inflammation in vivo.Atherosclerosis, 8,6(1): 240-247.
    [16] Murphy AJ, Woollard KJ, Hoang A, et al.High-density lipoprotein reduces the human monocyte inflammatory response .Arterioscler Thromb Vasc Biol, 8,8(11): 2 071-077.
    [17] Yin K, Liao DF, Tang CK.ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport.Mol Med, 0,6(9-10): 438-449.
    [18] Tabas I, Williams KJ, Borén J.Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications.Circulation, 7,6(16): 1 832-844.
    [19] Sklén K, Gustafsson M, Rydberg EK, et al.Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.Nature, 2,7(6890): 750-754.
    [20] Tabas I.Macrophage death and defective inflammation resolution in atherosclerosis.Natur Rev Immunol, 0,0(1): 36-46.
    [21] El Hadri K, Mahmood DF, Couchie D, et al.Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis.Arterioscler Thromb Vasc Biol, 2,2(6): 1 445-452.
    [22] Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, et al.M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells.J Immunol, 1,7(3): 1 157-165.
    [23] Bouhlel MA, Derudas B, Rigamonti E, et al.PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties.Cell Metab, 7,6(2): 137-143.
    [24] Wynn TA, Chawla A, Pollard JW.Macrophage biology in development, homeostasis and diseas .Nature, 3,6(7446): 445-455.
    [25] Karasawa T, Takahashi M.Role of NLRP-3 Inflammasomes in Atherosclerosis.J Atheroscler Thromb, 2017, doi: 10.5551/jat.RV17001.
    [26] Masters SL, Dunne A, Subramanian SL, et al.Activation of the NLRP-3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes.Nat Immunol, 0,1(10): 897-904.
    [27] Koenen RR, Weber C.Therapeutic targeting of chemokine interactions in atherosclerosis.Nat Rev Drug Discov, 0,9(2): 141-153.
    [28] Boring L, Gosling J, Cleary M, et al.Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis.Nature, 8,4(6696): 894-897.
    [29] Colin S, Chinetti-Gbaguidi G, Staels B.Macrophage phenotypes in atherosclerosis .Immunol Rev, 4,2(1): 153-166.
    [30] Georgiadis A, Papavasiliou E, Lourida E, et al.Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment--a prospective, controlled study.Arthritis Res Ther, 6,8(3): R82.
    [31] Mc Gillicuddy FC, de la Moya ML, Hinkle CC, et al.Inflammation impairs reverse cholesterol transport in vivo .Circulation, 9,9(8): 1 135-145.
    [32] Chen Y, Ruan XZ, Li Q, et al.Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance: a comparative study in human hepatic cells and mesangial cells.Am J Physiol Renal Physio, 7,3(3): F680-687.
    [33] Khovidhunkit W, Kim MS, Memon RA, et al.Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host.J Lipid Res, 4,5(7): 1 169-196.
    [34] Khera AV, Cuchel M, de la Llera-Moya M, et al.Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.N Engl J Med, 1,4(2): 127-135.
    [35] de la Moya ML, Mc Gillicuddy FC, Hinkle CC, et al.Inflammation modulates human HDL composition and function in vivo .Atherosclerosis, 2,2(2): 390-394.
    [36] Annema W, Nijstad N, Tlle M, et al.Myeloperoxidase and serum amyloid contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A2.J Lipid Res, 0,1(4): 743-754.
    [37] Hong C, Tontonoz P.Liver X receptors in lipid metabolism: opportunities for drug discovery .Nat Rev Drug Discov, 4,3(6): 433-444.
    [38] Undurti A, Huang Y, Lupica JA, et al.Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle.J Biol Chem, 9,4(45): 30 825-835.
    [39] Paulson KE, Zhu SN, Chen M, et al.Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis .Circ Res, 0,6(2): 383-390.
    [40] Pluquet O, Pourtier A, Abbadie C.The unfolded protein response and cellular senescence, a review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease .Am J Physiol Cell Physiol, 5,8(6): C415-425.
    [41] Myoishi M, Hao H, Minamino T, et al.Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome.Circulation, 7,6(11): 1 226-233.
    [42] Mor A, Planer D, Luboshits G, et al.Role of naturally occurring CD4+,CD25+ regulatory T cells in experimental atherosclerosis.Arterioscler Thromb Vasc Biol, 7,7(4): 893-900.
    [43] 孙龙飞, 安冬青.炎性信号通路在动脉粥样硬化中的机制与中医药干预作用研究进展.中国动脉硬化杂志, 5,3(11): 1 177-181.
    [44] Kim TW, Febbraio M, Robinet P, et al.The critical role of IL-1 receptor-associated kinase 4-mediated NF-κB activation in modified low-density lipoprotein-induced inflammatory gene expression and atherosclerosis.J Immunol, 1,6(5): 2 871-880.
    [45] Matsunaga T, Hokari S, Koyama I, et al.NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein .Biochem Biophys Res Commun, 3,3(1): 313-319.
    [46] Morishima A, Ohkubo N, Maeda N, et al.NF kappa B regulates plasma apolipoprotein A-I and high density lipoprotein cholesterol through inhibition of peroxisome proliferator-activated receptor alpha .J Biol Chem, 3,8(40): 38 188-193.
    [47] Gerbod-Giannone MC, Li Y, Holleboom A, et al.TNF alpha induces ABCA1 through NF-kappa B in macrophages and in phagocytes ingesting apoptotic cells.Proc Natl Acad Sci USA, 6,3(9): 3 112-117.
    [48] Yu XH, Jiang HL, Chen WJ, et al.Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-?B signaling pathway in THP-1 macrophage-derived foam cells.Circ J, 2,6(7): 1 780-791.
    [49] Nakaya K, Tohyama J, Naik SU, et al.Peroxisome proliferator-activated receptor-α activation promotes macrophage reverse cholesterol transport through a liver X receptor-dependent pathway .Arterioscler Thromb Vasc Biol, 1,1(6): 1 276-282.
    [50] Fu J, Gaetani S, Oveisi F, et al.Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha.Nature, 3,5(6953): 90-93.
    [51] Hu Q, Zhang XJ, Liu CX, et al.PPAR gamma 1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice.J Vasc Res, 2010, (1): 69-79.
    [52] Welch JS, Ricote M, Akiyama TE, et al.From the cover: PPAR gamma and PPAR delta negatively regulate specific subsets of lipopolysaccharide and IFN- gamma target genes in macrophages.PNAS, 3,0(11): 6 712-717.
    [53] Layne J, Majkova Z, Smart EJ, et al.Caveolae: a regulatory platform for nutritional modulation of inflammatory diseases.J Nutr Biochem, 1,2(9): 807-811.
    [54] Engel D, Beckers L, Wijnands E, et al.Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response.FASEB J, 1,5(11): 3 838-848.
    [55] Luo DX, Cao DL, Xiong Y, et al.A novel model of cholesterol efflux from lipid-loaded cells.Acta Pharmacol Sin, 0,1(10): 1 243-257.
    [56] Luo DX, Cheng J, Xiong Y, et al.Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway .Biochem Biophys Res Commun, 0,1(4): 1 693-697.
    [57] Sun SW, Zu XY, Tuo QH, et al.Caveolae and caveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells .Acta Pharmacol Sin, 0,1(10): 1 336-342.
    [58] Chidlow JH Jr, Sessa WC.Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation.Cardiovasc Res, 0,6(2): 219-225.
    [59] Yuan K, Huang C, Fox J, et al.Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB).J Biol Chem, 1,6(24): 21 814-825.
    [60] Wang XM, Kim HP, Nakahira K, et al.The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1.J Immunol, 9,2(6): 3 809-818.
    [61] Mirza MK, Yuan J, Gao XP, et al.Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation.Am J Pathol, 0,6(5): 2 344-351.
    [62] Rangel-Salazar R, Wickstrm-Lindholm M, Aguilar-Salinas CA, et al.Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.BMC Genomics, 1,2(1): 582.
    [63] Miranda MX, van Tits LJ, Lohmann C, et al.The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression .Eur Heart J, 5,6(1): 51-59.
    Related
    Cited by
Get Citation

GONG Yong-Zhen, SUN Shao-Wei, LIAO Duan-Fang. Interaction and regulation of cell inflammation and lipid metabolism[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2017,25(6):623-629.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 30,2016
  • Revised:April 07,2017
  • Online: June 05,2017
Article QR Code