Animal Models and Detection Technologies of Vulnerable Atherosclerotic Plaques
Author:
Affiliation:

Qilu Hospital of Shandong University, Jinan, Shandong 250012,China)

Clc Number:

R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [61]
  • | | | |
  • Comments
    Abstract:

    Vulnerable atherosclerotic plaque rupture leading to thrombosis is the major cause of acute coronary syndromes. While early detection or prevention the vulnerable plaque would be the only way to reduce the risk of this catastrophic life-threatening event, there is frustratingly little progress in either. Lack of suitable animal models has considerably hampered the research progress in understanding the mechanisms occurring in the development of plaque rupture. This review summarizes the currently available vulnerable plaque animal models and invasive and noninvasive imaging modalities used to detect vulnerable plaques, including high frequency duplex ultrasound, coronary tomographic angiography (CTA), magnetic resonance imaging (MRI), intravascular ultrasound (IVUS), optical coherence tomography (OCT), intravascular ultrasound elastography, and inflammatory markers.

    Reference
    [1] Burke AP, Farb A, Malcom GT, et al.Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.N Engl J Med, 7,6(18):1 276-282.
    [2] Davies MJ.The pathophysiology of acute coronary syndromes.Heart, 0,3(3):361-366.
    [3] Constantinides P, Chakravarti RN.Rabbit arterial thrombosis production by systemic procedures.Arch Pathol, 1,2:197-208.
    [4] Abela GS, Picon PD, Friedl SE, et al.Triggering of plaque disruption and arterial thrombosis in an athersclerotic rabbit model.Circulation, 5,1(3):776-784.
    [5] Rekhter MD, Hicks GW, Brammer DW, et al.Animal model that mimics atherosclerotic plaque rupture.Cir Res, 8,3(7):705-713.
    [6] Johnson JL, Jackson CL.Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse.Atherosclerosis, 1,4(2):399-406.
    [7] von der Th sen JH, van Vlijmen BJM, Hoeben RC, et al.Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p53.Circulation, 2,5(17):2 064-070.
    [8] Ni M, Chen WQ, Zhang Y.Animal models and potential mechanisms of plaque destabilization and disruption.Heart, 9,5(17):1 393-398.
    [9] Chen WQ, Zhang Y, Zhang M, et al.Establishing an animal model of unstable atherosclerotic plaques.Chin Med J(Engl), 4,7(9):1 293-298.
    [10] Chen WQ, Zhang L, Liu YF, et al.Prediction of atherosclerotic plaque ruptures with high-frequency ultrasound imaging and serum inflammatory markers.Am J Physiol Heart Circ Physiol, 7,3(5):2 836-844.
    [11] Zhang L, Liu Y, Lu X, et al.Intraplaque injection of Ad5-CMV.p53 aggravates local inflammation and leads to plaque instability in rabbits.J Cell Mol Med, 9,3(8B):2 713-723.
    [12] Lin HL, Xu XS, Lu HX, et al.Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques.J Mol Cell Cardiol, 7,3(3):272-280.
    [13] Ni M, Zhang M, Ding SF, et al.Micro-ultrasound imaging assessment of carotid plaque characteristics in apolipoprotein-E knockout mice.Atherosclerosis, 8,7(1):64-71.
    [14] Karalliedde LD, Kappagoda CT.The challenge of traditional Chinese medicines for allopathic practitioners.Am J Physiol Heart Circ Physiol, 9,7(6):H1 967-969.
    [15] Hopkins PN.Molecular biology of atherosclerosis.Physiol Rev, 2,3(3):1 317-542.
    [16] Wang L, Fan C, Topol SE, et al.Mutation of MEF2A in an inherited disorder with features of coronary artery disease.Science, 3,2(2 650):1 578-581.
    [17] Ozaki K, Tanaka T.Genome-wide SNP association study to identify genes related to myocardial infarction and their functional analyses.Tanpakushitsu Kakusan Koso, 4,9(14):2 215-221.
    [18] Linsel-Nitschke P, Heeren J, Aherrahrou Z, et al.Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease.Atherosclerosis, 0,8(1):183-189.
    [19] Domingues-Montanari S, Fernández-Cadenas I, Del Río-Espinola A, et al.KCNK17 genetic variants in ischemic stroke.Atherosclerosis, 0,8(1):203-209.
    [20] Elliott P, Chambers JC, Zhang W, et al.Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease.JAMA, 9,2(1):37-48.
    [21] Liuzzo G, Biasucci LM, Gallimore JR, et al.The prognostic value of C-reactive protein and serum amyloid A in severe unstable angina.N Engl J Med, 4,1(7):417-424.
    [22] Rubin J, Chang H-J, Nasir K, et al.Association between high-sensitivity C-reactive protein and coronary plaque subtypes assessed by 64-slice coronary computed tomography angiography in an asymptomatic population.Circ Cardiovasc Imaging, 1,4(3):201-209.
    [23] Sabatine MS, Morrow DA, Jablonski KA, et al.Prognostic significance of the Centers for Disease Control/ American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease.Circulation, 7,5(12):1 528-536.
    [24] Chen WQ, Zhang M, Ji XP, et al.Usefulness of high-frequency vascular ultrasound imaging and serum inflammatory markers to predict plaque rupture in patients with stable and unstable angina pectoris.Am J Cardiol, 7,0(9):1 341-346.
    [25] Zhang Y.Reply.Am J Cardiol, 8,1(10):1 519.
    [26] Wang Y, Li L, Tan HW, et al.Transcoronary concentration gradient of sCD40L and hsCRP in patients with coronary heart disease.Clin Cardiol, 7,0(2):86-91.
    [27] Vancraeynest D, Pasquet A, Roelants V, et al.Imaging the vulnerable plaque.J Am Coll Cardiol, 1,7(20):1 961-979.
    [28] Fleg JL, Stone GW, Fayad ZA, et al.Detection of high-risk atherosclerotic plaque:report of the NHLBI Working Group on current status and future directions.JACC Cardiovasc Imaging, 2,5(9):941-955.
    [29] Huibers A, de Borst GJ, Wan S, et al.Non-invasive carotid artery imaging to identify the vulnerable plaque:current status and future goals.Eur J Vasc Endovasc Surg, 5,0(5):563-572.
    [30] Ding S, Zhang M, Zhao Y, et al.The role of carotid plaque vulnerability and inflammation in the pathogenesis of acute ischemic stroke.Am J Med Sci, 8,6(1):27-31.
    [31] Zhang PF, Su HJ, Yao GH, et al.Plaque volume compression ratio, a novel biomechanical index, is independently associated with ischemic cerebrovascular events.J Hypertens, 9,7(2):348-356.
    [32] Sun Z, Xu L.Coronary CT angiography in the quantitative assessment of coronary plaques.Biomed Res Int, 4,4:346-380.
    [33] Motoyama S, Kondo T, Anno H, et al.Multi-slice compute tomographic characteristics of coronary lesions in acute coronary syndromes.J Am Coll Cardiol, 7,0(4):319-326.
    [34] Motoyama S, Sarai M, Harigaya H, et al.Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome.J Am Coll Cardiol, 9,4(1):49-57.
    [35] Kodama T, Kondo T, Oida A, et al.Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention.JACC Cardiovasc Interv, 2,5(6):636-643.
    [36] Inoue K, Motoyama S, Sarai M, et al.Serial coronary CT angiography-verified changes in plaque characteristics as an end-point:evaluation of effect of statin intervention.JACC Cardiovasc Imaging, 0,3(7):691-698.
    [37] Motoyama S, Kondo T, Sarai M, et al.Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes.J Am Coll Cardiol, 7,0(4):319-326.
    [38] Nakazato R, Shalev A, Doh JH, et al.Quantification and characterisation of coronary artery plaque volume and adverse plaque features by coronary computed tomographic angiography:a direct comparison to intravascular ultrasound.European Radiology, 3,3(8):2 109-117.
    [39] Papadopoulou S, Neefjes LA, Schaap M.et al.Detection and quantification of coronary atherosclerotic plaque by 64-slice multidetector CT:a systematic head-to-head comparison with intravascular ultrasound.Atherosclerosis, 1,9(1):163-170.
    [40] Voros S, Rinehart S, Qian Z.et al.Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions:results from the ALTANTA (Assessment of Tissue Characteristics, Lesion Morphology, and Hemodynamics by Angiography with Fractional Flow Reserve, Intravascular Ultrasound and Virtual Histology, and Noninvasive Computed Tomography in Atherosclerotic Plaques) I Study.JACC Cardiovasc Interv, 1,4(2):198-208.
    [41] Gao D, Ning N, Guo Y, et al.Computed tomography for detecting coronary artery plaques:a meta-analysis.Atherosclerosis, 1,9(2):603-609.
    [42] Cai J, Hatsukami TS, Ferguson MS, et al.In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque:comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology.Circulation, 5,2(22):3 437-444.
    [43] Yuan C, Zhang SX, Polissar NL, et al.Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke.Circulation, 2,5(2):181-185.
    [44] Chu B, Kampschulte A, Ferguson MS, et al.Hemorrhage in the atherosclerotic carotid plaque:a high-resolution MRI study.Stroke, 4,5(5):1 079-084.
    [45] Kampschulte A, Ferguson MS, Kerwin WS, et al.Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging.Circulation, 4,0(20):3 239-244.
    [46] Kerwin WS, O’Brien KD, Ferguson MS, et al.Inflammation in carotid atherosclerotic plaque:a dynamic contrast-enhanced MR imaging study.Radiology, 6,1(2):459-468.
    [47] Gyongyosi M, Yang P, Hassan A, et al.Intravascular ultrasound predictor of major adverse cardiac events in patients with unstable angina.Clin Cardiol, 0,3(7):507-515.
    [48] Di Mario C, The SH, Madretsma S, et al.Detection and characterization of vascular lesions by intravascular ultrasound:an in vitro study correlated with histology.J Am Soc Echocardiogr, 2,5(2):135-146.
    [49] Kotani J, Mintz GS, Castagna MT, et al.Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction.Circulation, 3,7(23):2 889-893.
    [50] Yamagishi M, Terashima M, Awano K, et al.Morphology of vulnerable coronary plaque:insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome.J Am Coll Cardiol, 0,5(1):106-111.
    [51] Chen WQ, Zhong L, Zhang L, et al.Oral Rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels.Br J Pharmacol, 9,6(6):941-951.
    [52] de Korte CL, Pasterkamp G, van der Steen AFW, et al.Characterization of plaque components using intravascular ultrasound elastography in human femoral and coronary in vitro.Circulation, 0,2(6):617-623.
    [53] Ma YF, Fam JM, Zhang BC.Critical analysis of the correlation between optical coherence tomography versus intravascularultrasound and fractional flow reserve in the management of intermediate coronary artery lesion.Int J Clin Exp Med, 5,8(5):6 658-667.
    [54] Uemura S, Ishigami K, Soeda T, et al.Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques.Eur Heart J, 2,3(1):78-85.
    [55] Kato K, Yonetsu T, Jia H, et al.Nonculprit coronary plaque characteristics of chronic kidney disease.Circ Cardiovasc Imaging, 3,6(3):448-456.
    [56] Kitabata H, Tanaka A, Kubo T, et al.Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease.Am J Cardiol, 0,5(12):1 673-678.
    [57] Tian J, Hou J, Xing L, et al.Significance of intraplaque neovascularisation for vulnerability:optical coherence tomography study.Heart, 2,8(20):1 504-509.
    [58] Tian J, Ren X, Vergallo R, et al.Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma:a combined optical coherence tomography and intravascular ultrasound study.J Am Coll Cardiol, 4,3(21):2 209-216.
    [59] Lehmann KG, van Suylen RJ, Stibbe J, et al.Composition of human thrombus assessed by quantitative colormetric angioscopic analysis.Circulation, 7,6(9):3 030-041.
    [60] Naghavi M, Madjid M, Gul K, et al.Thermography basket catheter:in vivo measurement of the temperature of atherosclerotic plaques for detection of vulnerable plaques.Catheter Cardiovasc Interv, 3,9(1):52-59.
    [61] Naghavi M, John R, Naguib S, et al.pH heterogeneity of human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable plaque.Atherosclerosis, 2,4(1):27-35.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Wen-Qiang, ZHANG Yun. Animal Models and Detection Technologies of Vulnerable Atherosclerotic Plaques[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2016,24(7):649-656.

Copy
Related Videos

Share
Article Metrics
  • Abstract:1175
  • PDF: 2435
  • HTML: 0
  • Cited by: 0
History
  • Received:March 20,2016
  • Revised:April 30,2016
  • Online: July 05,2016
Article QR Code