马凡综合征胸主动脉病变的分子机制研究进展
作者:
  • 高秋月 1,2

    高秋月

    首都医科大学基础医学院生理学与病理生理学系, ;心血管重塑相关疾病教育部重点实验室 代谢紊乱相关心血管疾病北京市重点实验室,北京市 100069 [专家简介] 于宝琪,博士,副教授,硕士研究生导师。主要从事血管干细胞及血管重塑性相关疾病的机制研究,发表SCI论文30余篇,其中以第一作者及通信作者含共同在Circulation等心血管领域杂志上发表SCI论文6篇。已获2项国家自然科学面上基金,并作为课题骨干参与国家重点研发计划青年科学家项目已获北京市委组织部优秀人才青年拔尖个人项目、北京市教委市属高校高水平教师队伍建设青年拔尖人才培育计划、北京市海外高层次人才青年项目等多项人才项目,授权1项发明专利。现任北京医学会血栓与止血分会青年委员会委员、《中国动脉硬化杂志》编委会青年编委、北京生理科学会理事会理事、中国生物物理学会代谢生物学分会青年委员、Global Translational Medicine编委。
    在知网中查找
    在百度中查找
    在本站中查找
  • 赵一铭 1,2

    赵一铭

    首都医科大学基础医学院生理学与病理生理学系, ;心血管重塑相关疾病教育部重点实验室 代谢紊乱相关心血管疾病北京市重点实验室,北京市 100069 [专家简介] 于宝琪,博士,副教授,硕士研究生导师。主要从事血管干细胞及血管重塑性相关疾病的机制研究,发表SCI论文30余篇,其中以第一作者及通信作者含共同在Circulation等心血管领域杂志上发表SCI论文6篇。已获2项国家自然科学面上基金,并作为课题骨干参与国家重点研发计划青年科学家项目已获北京市委组织部优秀人才青年拔尖个人项目、北京市教委市属高校高水平教师队伍建设青年拔尖人才培育计划、北京市海外高层次人才青年项目等多项人才项目,授权1项发明专利。现任北京医学会血栓与止血分会青年委员会委员、《中国动脉硬化杂志》编委会青年编委、北京生理科学会理事会理事、中国生物物理学会代谢生物学分会青年委员、Global Translational Medicine编委。
    在知网中查找
    在百度中查找
    在本站中查找
  • 于宝琪 1,2

    于宝琪

    首都医科大学基础医学院生理学与病理生理学系, ;心血管重塑相关疾病教育部重点实验室 代谢紊乱相关心血管疾病北京市重点实验室,北京市 100069 [专家简介] 于宝琪,博士,副教授,硕士研究生导师。主要从事血管干细胞及血管重塑性相关疾病的机制研究,发表SCI论文30余篇,其中以第一作者及通信作者含共同在Circulation等心血管领域杂志上发表SCI论文6篇。已获2项国家自然科学面上基金,并作为课题骨干参与国家重点研发计划青年科学家项目已获北京市委组织部优秀人才青年拔尖个人项目、北京市教委市属高校高水平教师队伍建设青年拔尖人才培育计划、北京市海外高层次人才青年项目等多项人才项目,授权1项发明专利。现任北京医学会血栓与止血分会青年委员会委员、《中国动脉硬化杂志》编委会青年编委、北京生理科学会理事会理事、中国生物物理学会代谢生物学分会青年委员、Global Translational Medicine编委。
    在知网中查找
    在百度中查找
    在本站中查找
作者单位:

(1.首都医科大学基础医学院生理学与病理生理学系, ;2.心血管重塑相关疾病教育部重点实验室 代谢紊乱相关心血管疾病北京市重点实验室,北京市 100069) [专家简介] 于宝琪,博士,副教授,硕士研究生导师。主要从事血管干细胞及血管重塑性相关疾病的机制研究,发表SCI论文30余篇,其中以第一作者及通信作者(含共同)在Circulation等心血管领域杂志上发表SCI论文6篇。已获2项国家自然科学面上基金,并作为课题骨干参与国家重点研发计划青年科学家项目;已获北京市委组织部优秀人才(青年拔尖个人项目)、北京市教委市属高校高水平教师队伍建设(青年拔尖人才培育计划)、北京市海外高层次人才(青年项目)等多项人才项目,授权1项发明专利。现任北京医学会血栓与止血分会青年委员会委员、《中国动脉硬化杂志》编委会青年编委、北京生理科学会理事会理事、中国生物物理学会代谢生物学分会青年委员、Global Translational Medicine编委。

作者简介:

高秋月,硕士研究生,研究方向为干细胞与主动脉瘤,E-mail:gaoqiuyue@mail.ccmu.edu.cn。

基金项目:

国家自然科学基金资助项目(32271231和81870186)


Advances in molecular mechanisms of thoracic aorta disease in Marfan syndrome
Author:
  • GAO Qiuyue 1,2

    GAO Qiuyue

    Department of Physiology and Pathophysiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China;The Key Laboratory of Cardiovascular Remodeling-related Diseases, Ministry of Education & Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, China
    在知网中查找
    在百度中查找
    在本站中查找
  • ZHAO Yiming 1,2

    ZHAO Yiming

    Department of Physiology and Pathophysiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China;The Key Laboratory of Cardiovascular Remodeling-related Diseases, Ministry of Education & Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, China
    在知网中查找
    在百度中查找
    在本站中查找
  • YU Baoqi 1,2

    YU Baoqi

    Department of Physiology and Pathophysiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China;The Key Laboratory of Cardiovascular Remodeling-related Diseases, Ministry of Education & Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, China
    在知网中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Department of Physiology and Pathophysiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China;2.The Key Laboratory of Cardiovascular Remodeling-related Diseases, Ministry of Education & Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    胸主动脉瘤/夹层是马凡综合征(MFS)患者主要的死亡原因。尽管转化生长因子β(TGF-β)通路的异常激活被认为是MFS胸主动脉瘤的核心发病机制,但近些年来的研究逐渐揭示了其他信号通路在MFS中的作用。本文将从经典TGF-β以及Notch、一氧化氮(NO)等相关信号通路、表观遗传学及药物基因治疗等多方面最新研究的成果综述MFS的分子机制,为MFS的预防和治疗提供新的思路。

    Abstract:

    Aortic aneurysm/dissection is the primary cause of mortality in patients with Marfan syndrome (MFS).Though aberrant activation of the transforming growth factor-β(TGF-β) pathway has been considered the central pathogenic mechanism for MFS aortic aneurysms, recent research has gradually revealed the involvement of other signaling pathways in MFS. This review summarizes the latest researches on the molecular mechanisms of MFS, including classical TGF-β and related signaling pathways such as Notch and nitric oxide(NO), as well as epigenetics and gene therapy, which provide new insights for the prevention and treatment of MFS.

    参考文献
    [1] MARELLI S, MICAGLIO E, TAURINO J, et al.Marfan syndrome:enhanced diagnostic tools and follow-up management strategies.Diagnostics (Basel), 3,3(13):2284.
    [2] DU Q, ZHANG D, ZHUANG Y, et al.The molecular genetics of Marfan syndrome.Int J Med Sci, 1,8(13):2752-2766.
    [3] STENGL R, GG B, PLOS M, et al.Potential predictors of severe cardiovascular involvement in Marfan syndrome:the emphasized role of genotype-phenotype correlations in improving risk stratification—a literature review.Orphanet J Rare Dis, 1,6(1):245.
    [4] PISCOPO A, WARNER T, NAGY J, et al.A novel de novo intragenic duplication in FBN1 associated with early-onset Marfan syndrome in a 16-month-old:a case report and review of the literature.Am J Med Genet A, 4,4(2):368-373.
    [5] MILEWICZ D M, BRAVERMAN A C, DE BACKER J, et al.Marfan syndrome.Nat Rev Dis Primers, 1,7(1):64.
    [6] VANDER ARK A, CAO J, LI X.TGF-β receptors:in and beyond TGF-β signaling.Cell Signal, 8,2:112-120.
    [7] MORIKAWA M, DERYNCK R, MIYAZONO K.TGF-β and the TGF-β family:context-dependent roles in cell and tissue physiology.Cold Spring Harb Perspect Biol, 6,8(5):a021873.
    [8] MACFARLANE E G, HAUPT J, DIETZ H C, et al.TGF-β family signaling in connective tissue and skeletal diseases.Cold Spring Harb Perspect Biol, 7,9(11):a022269.
    [9] TAKEDA N, HARA H, FUJIWARA T, et al.TGF-β signaling-related genes and thoracic aortic aneurysms and dissections.Int J Mol Sci, 8,9(7):2125.
    [10] 昌伟, 冯永健, 王友兰.血清TGF-β1、sST2水平与胸主动脉瘤病变长度和病变程度的关系.中国动脉硬化杂志, 2,0(1):54-58.CHANG W, FENG Y J, WANG Y L.Relationship between serum TGF-β1, sST2 levels and lesion length and lesion degree of thoracic aortic aneurysm.Chin J Arterioscler, 2,0(1):54-58.
    [11] MENG X M, NIKOLIC-PATERSON D J, LAN H Y.TGF-β:the master regulator of fibrosis.Nat Rev Nephrol, 6,2(6):325-338.
    [12] WEI H, HU J H, ANGELOV S N, et al.Aortopathy in a mouse model of Marfan syndrome is not mediated by altered transforming growth factor β signaling.J Am Heart Assoc, 7,6(1):e004968.
    [13] TELLIDES G.Further evidence supporting a protective role of transforming growth factor-β (TGFβ) in aortic aneurysm and dissection.Arterioscler Thromb Vasc Biol, 7,7(11):1983-1986.
    [14] SACHAN N, PHOON C K L, ZILBERBERG L, et al.TGFβ-2 haploinsufficiency causes early death in mice with Marfan syndrome.Matrix Biol, 3,1:41-55.
    [15] LUCAS M L, CARRARO C C, BELL-KLEIN A, et al.Oxidative stress in aortas of patients with advanced occlusive and aneurysmal diseases.Ann Vasc Surg, 8,2:216-224.
    [16] DELANTY N, REILLY M, PRATICO D, et al.8-Epi PGF2 alpha:specific analysis of an isoeicosanoid as an index of oxidant stress in vivo.Br J Clin Pharmacol, 6,2(1):15-19.
    [17] MARTINEZ-LEMUS L A, ZHAO G, GALIANES E L, et al.Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases.Am J Physiol Heart Circ Physiol, 1,0(6):H2005-H2015.
    [18] CARTA L, SMALDONE S, ZILBERBERG L, et al.p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice.J Biol Chem, 9,4(9):5630-5636.
    [19] WIPFF P J, HINZ B.Integrins and the activation of latent transforming growth factor beta1:an intimate relationship.Eur J Cell Biol, 8,7(8/9):601-615.
    [20] CROWTHER M, GOODALL S, JONES J L, et al.Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms.J Vasc Surg, 0,2(3):575-583.
    [21] DINESH N E H, REINHARDT D P.Inflammation in thoracic aortic aneurysms.Herz, 9,4(2):138-146.
    [22] JU X, IJAZ T, SUN H, et al.IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome.J Am Heart Assoc, 4,3(1):e000476.
    [23] ROY R, WILCOX J, WEBB A J, et al.Dysfunctional and dysregulated nitric oxide synthases in cardiovascular disease:mechanisms and therapeutic potential.Int J Mol Sci, 3,4(20):15200.
    [24] KANEGUCHI A, OZAWA J, MINAMIMOTO K, et al.Nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) attenuates remobilization-induced joint inflammation.Nitric Oxide, 0,6:13-19.
    [25] OLLER J, MNDEZ-BARBERO N, RUIZ E J, et al.Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome.Nat Med, 7,3(2):200-212.
    [26] KALYANARAMAN H, CASTEEL D E, CABRIALES J A, et al.The antioxidant/nitric oxide-Quenching agent cobinamide prevents aortic disease in a mouse model of Marfan syndrome.JACC Basic Transl Sci, 4,9(1):46-62.
    [27] D'ASSORO A B, LEON-FERRE R, BRAUNE E B, et al.Roles of Notch signaling in the tumor microenvironment.Int J Mol Sci, 2,3(11):6241.
    [28] ZHOU B, LIN W, LONG Y, et al.Notch signaling pathway:architecture, disease, and therapeutics.Signal Transduct Target Ther, 2,7(1):95.
    [29] HARRISON O J, VISAN A C, MOORJANI N, et al.Defective Notch signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy:a review of the evidence and future directions.Trends Cardiovasc Med, 9,9(2):61-68.
    [30] PEDROZA A J, KOYANO T, TROJAN J, et al.Divergent effects of canonical and non-canonical TGF-β signalling on mixed contractile-synthetic smooth muscle cell phenotype in human Marfan syndrome aortic root aneurysms.J Cell Mol Med, 0,4(3):2369-2383.
    [31] SCHAFER S, VISWANATHAN S, WIDJAJA A A, et al.IL-11 is a crucial determinant of cardiovascular fibrosis.Nature, 7,2(7683):110-115.
    [32] SCHAFER S, VISWANATHAN S, WIDJAJA A A, et al.IL-11 is a crucial determinant of cardiovascular fibrosis.Nature, 7,2(7683):110-115.
    [33] LIM W W, DONG J, NG B, et al.Inhibition of IL11 signaling reduces aortic pathology in murine Marfan syndrome.Circ Res, 2,0(5):728-740.
    [34] LIM W W, CORDEN B, NG B, et al.Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models.Sci Rep, 0,0(1):17853.
    [35] NETTERSHEIM F S, LEMTIES J, BRAUMANN S, et al.Nitro-oleic acid reduces thoracic aortic aneurysm progression in a mouse model of Marfan syndrome.Cardiovasc Res, 2,8(9):2211-2225.
    [36] LIU M, LI L, ZHU J, et al.Rapamycin attenuates a murine model of thoracic aortic aneurysm by downregulating the miR-126-3p mediated activation of MAPK/ERK signalling pathway.Biochem Biophys Res Commun, 9,2(3):498-504.
    [37] BOILEAU A, LINDSAY M E, MICHEL J B, et al.Epigenetics in ascending thoracic aortic aneurysm and dissection.Aorta (Stamford), 8,6(1):1-12.
    [38] ARAI Y, UMEYAMA K, OKAZAKI N, et al.DNA methylation ambiguity in the fibrillin-1 (FBN1) CpG island shore possibly involved in Marfan syndrome.Sci Rep, 0,0(1):5287.
    [39] GOMEZ D, COYET A, OLLIVIER V, et al.Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms.Cardiovasc Res, 1,9(2):446-456.
    [40] MERK D R, CHIN J T, DAKE B A, et al.miR-29b participates in early aneurysm development in Marfan syndrome.Circ Res, 2,0(2):312-324.
    [41] 张竣, 丁巍, 王建勋.非编码RNA在主动脉夹层中的研究进展.中国动脉硬化杂志, 3,1(2):171-179.ZHANG J, DING W, WANG J X.Research progress of non-coding RNA in aortic dissection.Chin J Arterioscler, 3,1(2):171-179.
    [42] COELHO S G, ALMEIDA A G.Marfan syndrome revisited:from genetics to the clinic.Rev Port Cardiol (Engl Ed), 0,9(4):215-226.
    [43] LIN J, VORA M, KANE N S, et al.Human Marfan and Marfan-like syndrome associated mutations lead to altered trafficking of the type Ⅱ TGFβ receptor in Caenorhabditis elegans.PLoS One, 9,4(5):e0216628.
    [44] ATTIAS D, STHENEUR C, ROY C, et al.Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders.Circulation, 9,0(25):2541-2549.
    [45] SOMERS A E, HINTON R B, PILIPENKO V, et al.Analysis of TGFBR1*6A variant in individuals evaluated for Marfan syndrome.Am J Med Genet A, 6,0(7):1786-1790.
    [46] SALIK I, RAWLA P.Marfan syndrome[M/OL].Treasure Island:Stat Pearls Publishing, 2024:NBK537339.https://pubmed.ncbi.nlm.nih.gov/30726024/.
    [47] CHIU H H.An update of medical care in Marfan syndrome.Tzu Chi Med J, 1,4(1):44-48.
    [48] HOLM T M, HABASHI J P, DOYLE J J, et al.Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.Science, 1,2(6027):358-361.
    [49] RAMIREZ F, CAESCU C, WONDIMU E, et al.Marfan syndrome:a connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness.Matrix Biol, 8,1/72:82-89.
    [50] YANG H H, KIM J M, CHUM E, et al.Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome.Br J Pharmacol, 9,8(6):1503-1512.
    [51] GROENINK M, DEN HARTOG A W, FRANKEN R, et al.Losartan reduces aortic dilatation rate in adults with Marfan syndrome:a randomized controlled trial.Eur Heart J, 3,4(45):3491-3500.
    [52] COOK J R, CLAYTON N P, CARTA L, et al.Dimorphic effects of transforming growth factor-beta signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome.Arterioscler Thromb Vasc Biol, 5,5(4):911-917.
    [53] ZEIGLER S M, SLOAN B, JONES J A.Pathophysiology and pathogenesis of Marfan syndrome.Adv Exp Med Biol, 1,8:185-206.
    [54] GUO G, OTT C E, GRNHAGEN J, et al.Indomethacin prevents the progression of thoracic aortic aneurysm in Marfan syndrome mice.Aorta (Stamford), 3,1(1):5-12.
    [55] MCLOUGHLIN D, MCGUINNESS J, BYRNE J, et al.Pravastatin reduces Marfan aortic dilation.Circulation, 1,4(11 Suppl):S168-S173.
    [56] OKAMURA H, EMRICH F, TROJAN J, et al.Long-term miR-29b suppression reduces aneurysm formation in a Marfan mouse model.Physiol Rep, 7,5(8):e13257.
    [57] CHUNG A W, YANG H H, RADOMSKI M W, et al.Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and-9.Circ Res, 8,2(8):e73-e85.
    [58] GIBSON C, NIELSEN C, ALEX R, et al.Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.J Appl Physiol, 7,3(1):147-160.
    [59] DELEEUW V, DE CLERCQ A, DE BACKER J, et al.An overview of investigational and experimental drug treatment strategies for Marfan syndrome.J Exp Pharmacol, 1,3:755-779.
    [60] KALLENBACH K, REMES A, MLLER O J, et al.Translational medicine:towards gene therapy of Marfan syndrome.J Clin Med, 2,1(14):3934.
    [61] GUIDO M C, LOPES N M, ALBUQUERQUE C I, et al.Treatment with methotrexate associated with lipid core nanoparticles prevents aortic dilation in a murine model of Marfan syndrome.Front Cardiovasc Med, 2,9:893774.
    相似文献
    引证文献
引用本文

高秋月,赵一铭,于宝琪.马凡综合征胸主动脉病变的分子机制研究进展[J].中国动脉硬化杂志,2024,32(8):645~653.

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 5060
历史
  • 收稿日期:2024-04-04
  • 最后修改日期:2024-05-21
  • 在线发布日期: 2024-08-21