同型半胱氨酸调控miRNA在心血管疾病中的作用研究进展
作者:
作者单位:

(1.山西医科大学第二临床医学院,;2.山西医科大学第二医院心血管内科,山西省太原市 030000)

作者简介:

李艳,硕士研究生,研究方向为心血管疾病,E-mail:Lyan_1114@163.com。

基金项目:

山西省重点研发计划项目(201903D321185)


Research progress on the role of Homocysteine regulated miRNA in cardiovascular diseases
Author:
Affiliation:

1.Second Clinical College of Shanxi Medical University, ;2.Department of Cardiovascular Medicine, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    同型半胱氨酸(Hcy)是由蛋氨酸代谢生成的中间代谢产物,大量研究发现Hcy与心血管疾病有很大关系。微小RNA(miRNA)是一大类短链非编码RNA,已在多种疾病中证实miRNA失调可导致疾病的发生发展,比如免疫紊乱、糖尿病、癫痫、癌症等。目前miRNA因其在心血管系统中的关键作用而被认为是心血管疾病的新治疗策略。当前研究已证实Hcy与miRNA均是心血管疾病的危险因素,Hcy可通过调控miRNA影响心血管疾病,miRNA也可能对Hcy引起相应变化。但Hcy与miRNA的相互影响在心血管疾病中的作用还有待明确。本文简要综述了Hcy调控miRNA在心血管疾病中的作用进展及其潜在的临床应用价值。

    Abstract:

    Homocysteine (Hcy) is an intermediate metabolite of methionine metabolism, and a large number of studies have found that Hcy is closely related to cardiovascular diseases. MicroRNA(miRNA) is a large class of short-chain non-coding RNA, it has been confirmed in a variety of diseases that miRNA disorder can lead to disease progression, such as immune disorders, diabetes, epilepsy, cancer, etc. At present, miRNA is considered as a new treatment strategy for cardiovascular diseases due to its crucial role in the cardiovascular system. The current study has confirmed that both Hcy and miRNA are risk factors for cardiovascular disease, but the role of Hcy and miRNA interaction in cardiovascular disease remains to be elucidated. This paper briefly reviews the progress and potential clinical application of Hcy regulated miRNA in cardiovascular diseases.

    参考文献
    [1] LEE R C, FEINBAUM R L, AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell, 3,5(5):843-854.
    [2] HUANG Y.The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases.J Cell Mol Med, 8,2(12):5768-5775.
    [3] SABOUR D, MACHADO R S R, PINTO J P, et al.Parallel genome-wide profiling of coding and non-coding RNAs to identify novel regulatory elements in embryonic and maturated heart.Mol Ther Nucleic Acids, 8,2:158-173.
    [4] KARERE G M, GLENN J P, LI G, et al.Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions.Sci Rep, 3,3(1):3467.
    [5] REDDY L L, SHAH S A V, PONDE C K, et al.Circulating miRNA-33:a potential biomarker in patients with coronary artery disease.Biomarkers, 9,4(1):36-42.
    [6] ZHANG X B, ROTLLAN N, CANFRN-DUQUE A, et al.Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression.Circ Res, 2,1(1):77-90.
    [7] NISHIGA M S T, HORIE T, KUWABARA Y, et al.MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol.Circ Res, 7,0(5):835-847.
    [8] RAYNER K J, FERNANDEZ-HERNANDO C, MOORE K J.MicroRNAs regulating lipid metabolism in atherogenesis.Thromb Haemost, 2,7(4):642-647.
    [9] LI T R, CAO H C, ZHUANG J M, et al.Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans.Clin Chim Acta, 1,2(1/2):66-70.
    [10] MU Z J, FU J L, SUN L N, et al.Associations between homocysteine,inflammatory cytokines and sarcopenia in Chinese older adults with type 2 diabetes.BMC Geriatr, 1,1(1):692.
    [11] ROOSTAEI T, FELSKY D, NAZERI A, et al.Genetic influence of plasma homocysteine on Alzheimer's disease.Neurobiol Aging, 8,2:243.e7-243.e14.
    [12] CHRISTINE C W, AUINGER P, JOSLIN A, et al.Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson's disease.Mov Disord, 8,3(5):762-770.
    [13] LI C Y, QIN J Y, LIU W P, et al.Profiling of homocysteine metabolic pathway related metabolites in plasma of diabetic mellitus based on LC-QTOF-MS.Molecules, 3,8(2):656.
    [14] ZHAO Q, LI S, LI N, et al.miR-34a targets HDAC1-regulated H3K9 acetylation on lipid accumulation induced by homocysteine in foam cells.J Cell Biochem, 7,8(12):4617-4627.
    [15] 王颖, 邹永秋, 陈泽琨, 等.高同型半胱氨酸血症与血脂异常的相关性研究.中国动脉硬化杂志, 9,7(10):887-892.WANG Y, ZOU Y Q, CHEN Z K, et al.The relationship between hyperhomocysteinemia and dyslipidemia.Chin J Arterioscler, 9,7(10):887-892.
    [16] DONG A A, HE M, LI J, et al.microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production.JCI Insight, 0,5(23):143812.
    [17] XIAOLING Y, LI Z, SHUQIANG L, et al.Hyperhomocysteinemia in ApoE-/- mice leads to overexpression of enhancer of zeste homolog 2 via miR-92a regulation.PLoS One, 6,1(12):e0167744.
    [18] OUIMET M, BARRETT T J, FISHER E A.HDL and reverse cholesterol transport.Circ Res, 9,4(10):1505-1518.
    [19] 王远, 高宏伟, 冯高洁, 等.冠心病患者来源HDL对小鼠腹腔巨噬细胞脂质沉积及凋亡的影响.中国病理生理杂志, 0,6(2):206-213.WANG Y, GAO H W, FENG G J, et al.Effects of HDL from patients with coronary artery disease on lipid deposition and apoptosis in mouse peritoneal macrophages.Chin J Pathophysiol, 0,6(2):206-213.
    [20] WAGSCHAL A, NAJAFI-SHOUSHTARI S H, WANG L F, et al.Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.Nat Med, 5,1(11):1290-1297.
    [21] GOEDEKE L, ROTLLAN N, CANFRN-DUQUE A, et al.MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.Nat Med, 5,1(11):1280-1289.
    [22] HUESO M, GRIN R, MALLEN A, et al.MiR-125b downregulates macrophage scavenger receptor type B1 and reverse cholesterol transport.Biomed Pharmacother, 2,6:112596.
    [23] 代佩, 高奋, 高宏伟, 等.miRNA-33对Hcy干预RAW264.7巨噬细胞衍生的泡沫细胞表达ABCA1/ABCG1的影响.中国病理生理杂志, 9,5(2):212-217.DAI P, GAO F, GAO H W, et al.Effect of miRNA-33 on ABCA1/ABCG1 expression in RAW264.7 macrophage-derived foam cells after Hcy treatment.Chin J Pathophysiol, 9,5(2):212-217.
    [24] XIONG J, MA F, DING N, et al.miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications.Aging Cell, 1,0(10):e13485.
    [25] ZHANG H, HAO Y J, YANG A N, et al.TGFB3-AS1 promotes Hcy-induced inflammationof macrophages via inhibiting the maturityof miR-144 and upregulating Rap1a.Mol Ther Nucleic Acids, 1,6:1318-1335.
    [26] ZHANG M H, LI F, WANG X Y, et al.MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic Switch through repression of the PI3K/Akt/mTOR pathway.Histochem Cell Biol, 0,3(5):357-366.
    [27] GUO X, LI D, CHEN M, et al.miRNA-145 inhibits VSMC proliferation by targeting CD40.Sci Rep, 6,6:35302.
    [28] LI Y, CHEN F, GUO R, et al.Tanshinone a inhibits homocysteine-induced proliferation of vascular smooth muscle cells via miR-145/CD40 signaling.Biochem Biophys Res Commun, 0,2(1):157-163.
    [29] YAN P, SUN C, MA J L, et al.MicroRNA-128 confers protection against cardiac microvascular endothelial cell injury in coronary heart disease via negative regulation of IRS1.J Cell Physiol, 9,4(8):13452-13463.
    [30] SU Y, SUN Y X, TANG Y S, et al.Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure.J Am Heart Assoc, 1,0(20):e022304.
    [31] CHANG G N, ZHANG W Q, ZHANG M C, et al.Clinical value of circulating ZFAS1 and miR-590-3p in the diagnosis and prognosis of chronic heart failure.Cardiovasc Toxicol, 1,1(11):880-888.
    [32] ZHU Q W, LI S H, JI K, et al.Differentially expressed TUG1 and miR-145-5p indicate different severity of chronic heart failure and predict 2-year survival prognosis.Exp Ther Med, 1,2(6):1362.
    [33] MISHRA P K, TYAGI N, KUNDU S, et al.MicroRNAs are involved in homocysteine-induced cardiac remodeling.Cell Biochem Biophys, 9,5(3):153-162.
    [34] KESHERWANI V, NANDI S S, SHARAWAT S K, et al.Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes.Mol Cell Biochem, 5,4(1/2):241-250.
    [35] TAO L X, YANG K, WU J, et al.Association between plasma homocysteine and hypertension:results from a cross-sectional and longitudinal analysis in Beijing's adult population from 2012 to 2017.J Clin Hypertens (Greenwich), 8,0(11):1624-1632.
    [36] WANG F, FANG Q, CHEN C, et al.Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension.Mol Ther Nucleic Acids, 8,1:354-366.
    [37] YUAN Y J, CAI X T, LIU Y, et al.Dose-response association between plasma homocysteine and white matter lesions in patients with hypertension:a case-control study.Hypertens Res, 2,5(11):1794-1801.
    [38] LIU Q L, LIU X, ZHANG X L, et al.Diagnostic value of Hcy combined with blood pressure variability index in the severity of hypertension complicated with CSVD and its correlation with cognitive function and CysC expression.J Healthc Eng, 2,2:9003537.
    [39] SHI L, LIU X Y, HUANG Z G, et al.Endogenous hydrogen sulfide and ERK1/2-STAT3 signaling pathway may participate in the association between homocysteine and hypertension.J Geriatr Cardiol, 9,6(11):822-834.
    [40] TYAGI N, MOSHAL K S, OVECHKIN A V, et al.Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia.J Cell Biochem, 5,6(4):665-671.
    [41] LI F, CHEN Q, SONG X W, et al.MiR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of Caspase 3.Int J Mol Sci, 5,6(8):17682-17695.
    [42] SONG C L, LIU B, SHI Y F, et al.MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway.Oncotarget, 6,7(44):71922-71936.
    相似文献
    引证文献
引用本文

李艳,于永丽,董子豪,李虹,高奋.同型半胱氨酸调控miRNA在心血管疾病中的作用研究进展[J].中国动脉硬化杂志,2023,31(8):725~730.

复制
分享
文章指标
  • 点击次数:539
  • 下载次数: 964
历史
  • 收稿日期:2022-12-02
  • 最后修改日期:2023-03-27
  • 在线发布日期: 2023-07-20