铁死亡在代谢性心血管疾病中的作用
作者:
作者单位:

(1.首都医科大学基础医学院,北京市 100069;2.首都医科大学基础医学院生理学与病理生理学系,北京市 100069 ;3.代谢紊乱相关心血管疾病北京市重点实验室,北京市 100069)

作者简介:

孔湘柠,研究方向为代谢紊乱与心血管衰老,E-mail:ning_0424@qq.com。通信作者王雯,博士,教授,博士研究生导师,研究方向为代谢紊乱相关心血管疾病的发病机制及干预,E-mail:wangwen@ccmu.edu.cn。

基金项目:

国家自然科学基金项目(91839107)


The role of ferroptosis in metabolic cardiovascular diseases
Author:
Affiliation:

1.School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;2.Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University,Beijing 100069, China ;3.Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    铁死亡是一种程序性细胞死亡方式,其特征是细胞亚铁离子及大量脂质过氧化物的积累。代谢性心血管疾病是由一系列代谢因素参与的以心血管功能损害为特征的疾病。越来越多的研究表明铁死亡在代谢性心血管疾病的发生发展中发挥着重要的作用。探究铁死亡在代谢性心血管疾病中的作用,对揭示代谢性心血管疾病的发病机制和防治策略具有重要的临床意义。

    Abstract:

    Ferroptosis is a form of programmed cell death, which is characterized by the accumulation of ferrous irons and a large number of lipid peroxides in cells. Metabolic cardiovascular diseases are characterized by cardiovascular dysfunction involving a series of metabolic factors. More and more studies have shown that ferroptosis plays an important role in the occurrence and development of metabolic cardiovascular diseases. Therefore, exploring the role of ferroptosis in metabolic cardiovascular diseases has vital clinical significance for revealing the pathogenesis and prevention strategies of metabolic cardiovascular diseases.

    参考文献
    [1] SAKLAYEN M G.The global epidemic of the metabolic syndrome.Curr Hypertens Rep, 8,0(2):12.
    [2] REICHERT C O, DE FREITAS F A, SAMPAIO-SILVA J, et al.Ferroptosis mechanisms involved in neurodegenerative diseases.Int J Mol Sci, 0,1(22):8765.
    [3] KOPPULA P, ZHUANG L, GAN B Y.Cystine transporter SLC7A11/xCT in cancer:ferroptosis, nutrient dependency, and cancer therapy.Protein Cell, 1,2(8):599-620.
    [4] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death.Cell, 2,9(5):1060-1072.
    [5] YANG W S, KIM K J, GASCHLER M M, et al.Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc Natl Acad Sci U S A, 6,3(34):E4966-E4975.
    [6] LI J, CAO F, YIN H L, et al.Ferroptosis:past, present and future.Cell Death Dis, 0,1(2):88.
    [7] JIANG L, KON N, LI T Y, et al.Ferroptosis as a p53-mediated activity during tumour suppression.Nature, 5,0(7545):57-62.
    [8] SHINTOKU R, TAKIGAWA Y, YAMADA K, et al.Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3.Cancer Sci, 7,8(11):2187-2194.
    [9] DOLL S, FREITAS F P, SHAH R, et al.FSP1 is a glutathione-independent ferroptosis suppressor.Nature, 9,5(7784):693-698.
    [10] WANG K, CHEN X Z, WANG Y H, et al.Emerging roles of ferroptosis in cardiovascular diseases.Cell Death Discov, 2,8(1):394.
    [11] GAN B.Mitochondrial regulation of ferroptosis.J Cell Biol, 1,0(9):e202105043.
    [12] CHEN X, KANG R, KROEMER G, et al.Broadening horizons:the role of ferroptosis in cancer.Nat Rev Clin Oncol, 1,8(5):280-296.
    [13] TANG Z, JIANG W L, MAO M, et al.Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin.Clin Transl Med, 1,1(4):e390.
    [14] KOPPULA P, ZHANG Y L, ZHUANG L, et al.Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer.Cancer Commun (Lond), 8,8(1):12.
    [15] WANG L, CAI H, HU Y T, et al.A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis.Cell Death Dis, 8,9(10):1005.
    [16] WANG M, MAO C, OUYANG L L, et al.Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA.Cell Death Differ, 9,6(11):2329-2343.
    [17] JIANG X J, STOCKWELL B R, CONRAD M.Ferroptosis:mechanisms, biology and role in disease.Nat Rev Mol Cell Biol, 1,2(4):266-282.
    [18] PASCUAL G, AVGUSTINOVA A, MEJETTA S, et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature, 7,1(7635):41-45.
    [19] WATT M J, CLARK A K, SELTH L A, et al.Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer.Sci Transl Med, 9,1(478):eaau5758.
    [20] BUHNIK-ROSENBLAU K, MOSHE-BELIZOWSKI S, DANIN-POLEG Y, et al.Genetic modification of iron metabolism in mice affects the gut microbiota.Biometals, 2,5(5):883-892.
    [21] STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al.Ferroptosis:a regulated cell death nexus linking metabolism, redox biology, and disease.Cell, 7,1(2):273-285.
    [22] MASON R P, LIBBY P, BHATT D L.Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid.Arterioscler Thromb Vasc Biol, 0,0(5):1135-1147.
    [23] LEE H, ZANDKARIMI F, ZHANG Y L, et al.Energy-stress-mediated AMPK activation inhibits ferroptosis.Nat Cell Biol, 0,2(2):225-234.
    [24] SONG X X, ZHU S, CHEN P, et al.AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc- activity.Curr Biol, 8,8(15):2388-2399.
    [25] SHIMADA K N H, HAYANO M, PAGANO N C, et al.Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity.Cell Chem Biol, 6,3(2):225-235.
    [26] KIM H, LEE J H, PARK J W.Down-regulation of IDH2 sensitizes cancer cells to erastin-induced ferroptosis.Biochem Biophys Res Commun, 0,5(2):366-371.
    [27] XIE Y C, ZHU S, SONG X X, et al.The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity.Cell Rep, 7,0(7):1692-1704.
    [28] YANG W H, DING C K C, SUN T A, et al.The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma.Cell Rep, 9,8(10):2501-2508.
    [29] BALLA G, JACOB H S, EATON J W, et al.Hemin:a possible physiological mediator of low density lipoprotein oxidation and endothelial injury.Arterioscler Thromb, 1,1(6):1700-1711.
    [30] FERNNDEZ-GARCA V, GONZLEZ-RAMOS S, AVENDAO-ORTIZ J, et al.NOD1 splenic activation confers ferroptosis protection and reduces macrophage recruitment under pro-atherogenic conditions.Biomed Pharmacother, 2,8:112769.
    [31] DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D.NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol, 9,3:101107.
    [32] ZHANG Z Z, FUNCKE J B, ZI Z Z, et al.Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity.Cell Metab, 1,3(8):1624-1639.
    [33] LASCAR N, BROWN J, PATTISON H, et al.Type 2 diabetes in adolescents and young adults.Lancet Diabetes Endocrinol, 8,6(1):69-80.
    [34] BABA Y, HIGA J K, SHIMADA B K, et al.Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes.Am J Physiol Heart Circ Physiol, 8,4(3):H659-H668.
    [35] FANG X X, WANG H, HAN D, et al.Ferroptosis as a target for protection against cardiomyopathy.Proc Natl Acad Sci U S A, 9,6(7):2672-2680.
    [36] SHA W X, HU F, XI Y, et al.Mechanism of ferroptosis and its role in type 2 diabetes mellitus.J Diabetes Res, 1,1:9999612.
    [37] ZHANG W Q, LU J H, WANG Y Y, et al.Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway.Int J Mol Sci, 3,4(1):858.
    [38] 廖韦, 夏梦蝶, 向琼, 等.铁死亡在心力衰竭中的研究进展.中国动脉硬化杂志, 2,0(9):821-828.LIAO W, XIA M D, XIANG Q, et al.Research progress of ferroptosis in heart failure.Chin J Arterioscler, 2,0(9):821-828.
    [39] MA S, HE L L, ZHANG G R, et al.Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction.Naunyn Schmiedebergs Arch Pharmacol, 2,5(8):945-962.
    [40] LIU B, ZHAO C X, LI H K, et al.Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis.Biochem Biophys Res Commun, 8,7(1):233-240.
    [41] CONWAY B, RENE A.Obesity as a disease:no lightweight matter.Obes Rev, 4,5(3):145-151.
    [42] WANG N, MA H, LI J, et al.HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes.J Mol Cell Cardiol, 1,0:65-76.
    [43] LI X P, HE T C, YU K, et al.Markers of iron status are associated with risk of hyperuricemia among Chinese adults:nationwide population-based study.Nutrients, 8,0(2):191.
    [44] YU W, LIU W D, XIE D, et al.High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis.Oxid Med Cell Longev, 2,2:9304383.
    相似文献
    引证文献
引用本文

孔湘柠,兰玥,严文静,王雯.铁死亡在代谢性心血管疾病中的作用[J].中国动脉硬化杂志,2023,31(5):369~374.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-12-20
  • 最后修改日期:2023-02-02
  • 在线发布日期: 2023-05-19