线粒体相关内质网膜:心血管疾病治疗的新靶点
作者:
作者单位:

(哈尔滨医科大学,黑龙江省哈尔滨市 150081)

作者简介:

董博文,硕士研究生,主要研究方向为心血管疾病防治机制,E-mail为726604784@qq.com。杨力明,教授,博士研究生导师,研究方向为生物医学工程介导的心血管疾病防治。

基金项目:

国家自然科学基金资助项目(91939104、82070465和82170469);黑龙江省自然科学基金杰出青年项目(JQ2021H001);心血管疾病国家重点实验室开放课题资助项目(2019kf-02);心肌缺血教育部重点实验室开放课题资助项目(KF201908);黑龙江省卫生健康委面上项目(2020-075)


Mitochondria-associated ER membranes:a new target for the treatment of cardiovascular diseases
Author:
Affiliation:

Harbin Medical University, Harbin, Heilongjiang 150081, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    线粒体相关内质网膜是指内质网和线粒体之间高度动态的紧密连接部分,参与维持内质网和线粒体的正常功能,与细胞脂质代谢、钙稳态、线粒体动力学、自噬和凋亡、内质网应激和炎症等密切相关。研究显示线粒体相关内质网膜功能异常或者数量和结构改变参与心血管疾病的发生发展。本文总结了线粒体相关内质网膜的功能,阐述了其在心血管疾病中的作用及可能机制,为线粒体相关内质网膜成为心血管疾病治疗的新靶点提供理论参考。

    Abstract:

    The highly dynamic tight junctions between the endoplasmic reticulum and mitochondria are known as mitochondria-associated ER membranes. These domains are essential for basic biological processes, including lipid metabolism, calcium homeostasis, mitochondrial dynamics, autophagy and apoptosis, endoplasmic reticulum stress and inflammation. Many studies have proved the abnormal amount, structure or function of mitochondria-associated ER membranes are related to the occurrence and development of cardiovascular diseases. This paper summarized the functions of mitochondria-associated ER membranes and its roles and possible mechanism in cardiovascular diseases, and provided theoretical references for mitochondria-associated ER membranes to become new targets for cardiovascular therapy.

    参考文献
    [1] 杜杰, 李玉琳, 李扬.心血管疾病防治的转化医学研究——青年冠心病精准防治的困境与转化医学研究方案.中国动脉硬化杂志, 1,9(2):93-97.
    [2] PERNAS L, SCORRANO L.Mito-morphosis:mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.Ann Rev Physiol, 6,8:505-531.
    [3] LACKNER L L.The expanding and unexpected functions of mitochondria contact sites.Trends Cell Biol, 9,9(7):580-590.
    [4] MISSIROLI S, PATERGNANI S, CAROCCIA N, et al.Mitochondria-associated membranes (MAM) and inflammation.Cell Death Dis, 8,9(3):329.
    [5] ZHOU R, YAZDI A S, MENU P, et al.A role for mitochondria in NLRP3 inflammasome activation.Nature, 1,9(7329):221-225.
    [6] ZHOU R, TARDIVEL A, THORENS B, et al.Thioredoxin-interacting protein links oxidative stress to inflammasome activation.Nat Immunol, 0,1(2):136-140.
    [7] ZEESHAN H M, LEE G H, KIM H R, et al.Endoplasmic reticulum stress and associated ROS.Int J Mol Sci, 6,7(3):327.
    [8] SONG S, TAN J, MIAO Y, et al.Crosstalk of ER stress-mediated autophagy and ER-phagy:involvement of UPR and the core autophagy machinery.J Cell Physiol, 8,3(5):3867-3874.
    [9] BRAVO R, VICENCIO J M, PARRA V, et al.Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress.J Cell Sci, 1,4(Pt 13):2143-2152.
    [10] VERFAILLIE T, RUBIO N, GARG A D, et al.PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress.Cell Death Differ, 2,9(11):1880-1891.
    [11] CARRERAS-SUREDA A, JAA F, URRA H, et al.Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics.Nat Cell Biol, 9,1(6):755-767.
    [12] BOOTH D M, ENYEDI B, GEISZT M, et al.Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface.Molecular cell, 6,3(2):240-248.
    [13] DEBATTISTI V, GERENCSER A A, SAOTOME M, et al.ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak.Cell reports, 7,1(6):1667-1680.
    [14] PINTON P, RIMESSI A, MARCHI S, et al.Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc.Science(New York, NY), 7,5(5812):659-663.
    [15] AKHMEDOV A, MONTECUCCO F, BRAUNERSREUTHER V, et al.Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways.Eur Heart J, 5,6(8):516-526a.
    [16] BOENGLER K, BORNBAUM J, SCHLüTER K D, et al.p66Shc and its role in ischemic cardiovascular diseases.Basic Res Cardiol, 9,4(4):29.
    [17] VANCE J E.Phospholipid synthesis in a membrane fraction associated with mitochondria.J Biol Chem, 0,5(13):7248-7256.
    [18] FLIS V V, DAUM G.Lipid transport between the endoplasmic reticulum and mitochondria.Cold Spring Harb Perspect Biol, 3,5(6):a013235.
    [19] VANCE J E.MAM (mitochondria-associated membranes) in mammalian cells:lipids and beyond.Biochim Biophys Acta, 4,1(4):595-609.
    [20] GALMES R, HOUCINE A, VAN VLIET A R, et al.ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function.EMBO Rep, 6,7(6):800-810.
    [21] DENNIS E A, KENNEDY E P.Intracellular sites of lipid synthesis and the biogenesis of mitochondria.J Lipid Res, 2,3(2):263-267.
    [22] OSMAN C, VOELKER D R, LANGER T.Making heads or tails of phospholipids in mitochondria.J Cell Biol, 1,2(1):7-16.
    [23] BIONDA C, PORTOUKALIAN J, SCHMITT D, et al.Subcellular compartmentalization of ceramide metabolism:MAM (mitochondria-associated membrane) and/or mitochondria.Biochem J, 4,2(Pt 2):527-533.
    [24] ISSOP L, FAN J, LEE S, et al.Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis:role of ATAD3.Endocrinology, 5,6(1):334-345.
    [25] BOSCH M, MAR M, HERMS A, et al.Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility.Curr Biol, 1,1(8):681-686.
    [26] SALA-VILA A, NAVARRO-LRIDA I, SNCHEZ-ALVAREZ M, et al.Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice.Sci Rep, 6,6:27351.
    [27] HAYASHI T, FUJIMOTO M.Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction.Mol Pharmacol, 0,7(4):517-528.
    [28] FUJIMOTO M, HAYASHI T, SU T P.The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria.Biochem Biophys Res Commun, 2,7(1):635-639.
    [29] FRIEDMAN J R, LACKNER L L, WEST M, et al.ER tubules mark sites of mitochondrial division.Science(New York, NY), 1,4(6054):358-362.
    [30] SCHON E A, AREA-GOMEZ E.Mitochondria-associated ER membranes in Alzheimer disease.Mol Cell Neurosci, 3,5:26-36.
    [31] WESTERMANN B.Mitochondrial fusion and fission in cell life and death.Nat Rev Mol Cell Biol, 0,1(12):872-884.
    [32] KOSHIBA T, DETMER S A, KAISER J T, et al.Structural basis of mitochondrial tethering by mitofusin complexes.Science(New York, NY), 4,5(5685):858-862.
    [33] DE BRITO O M, SCORRANO L.Mitofusin 2 tethers endoplasmic reticulum to mitochondria.Nature, 8,6(7222):605-610.
    [34] NAON D, ZANINELLO M, GIACOMELLO M, et al.Critical reappraisal confirms that mitofusin 2 is an endoplasmic reticulum-mitochondria tether.Proc Natl Acad Sci U S A, 6,3(40):11249-11254.
    [35] FILADI R, PENDIN D, PIZZO P.Mitofusin 2:from functions to disease.Cell Death Dis, 8,9(3):330.
    [36] PATERGNANI S, SUSKI J M, AGNOLETTO C, et al.Calcium signaling around mitochondria associated membranes(MAMs).Cell Commun Signal, 1,9:19.
    [37] SZABADKAI G, BIANCHI K, VRNAI P, et al.Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels.J Cell Biol, 6,5(6):901-911.
    [38] BONORA M, BONONI A, DE MARCHI E, et al.Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition.Cell Cycle, 3,2(4):674-683.
    [39] EISNER V, CSORDS G, HAJNCZKY G.Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle-pivotal roles in Ca2+ and reactive oxygen species signaling.J Cell Sci, 3,6(Pt 14):2965-2978.
    [40] MARINI E S, GIAMPIETRI C, PETRUNGARO S, et al.The endogenous Caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria.Cell Death Differ, 5,2(7):1131-1143.
    [41] MUSATOV A, SEDLK E.Role of cardiolipin in stability of integral membrane proteins.Biochimie, 7,2:102-111.
    [42] GHOSH S, BASU BALL W, MADARIS T R, et al.An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter.Proc Natl Acad Sci U S A, 0,7(28):16383-16390.
    [43] CLAYPOOL S M, KOEHLER C M.The complexity of cardiolipin in health and disease.Trends Biochem Sci, 2,7(1):32-41.
    [44] HSU P, SHI Y.Regulation of autophagy by mitochondrial phospholipids in health and diseases.Biochim Biophys Acta Mol Cell Biol Lipids, 7,2(1):114-129.
    [45] GIORGI C, MISSIROLI S, PATERGNANI S, et al.Mitochondria-associated membranes:composition, molecular mechanisms, and physiopathological implications.Antioxid Redox Signal, 5,2(12):995-1019.
    [46] GARCIA FERNANDEZ M, TROIANO L, MORETTI L, et al.Early changes in intramitochondrial cardiolipin distribution during apoptosis.Cell Growth Differ, 2,3(9):449-455.
    [47] KAGAN V E, TYURIN V A, JIANG J, et al.Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors.Nat Chem Biol, 5,1(4):223-232.
    [48] HORVATH S E, DAUM G.Lipids of mitochondria.Prog Lipid Res, 3,2(4):590-614.
    [49] HAILEY D W, RAMBOLD A S, SATPUTE-KRISHNAN P, et al.Mitochondria supply membranes for autophagosome biogenesis during starvation.Cell, 0,1(4):656-667.
    [50] HAMASAKI M, FURUTA N, MATSUDA A, et al.Autophagosomes form at ER-mitochondria contact sites.Nature, 3,5(7441):389-393.
    [51] BETZ C, STRACKA D, PRESCIANOTTO-BASCHONG C, et al.Feature Article:mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes(MAM) regulates mitochondrial physiology.Proc Nat Acad Sci USA, 3,0(31):12526-12534.
    [52] COLOMBI M, MOLLE K D, BENJAMIN D, et al.Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction.Oncogene, 1,0(13):1551-1565.
    [53] PATERGNANI S, MARCHI S, RIMESSI A, et al.PRKCB/protein kinase C beta and the mitochondrial axis as key regulators of autophagy.Autophagy, 3,9(9):1367-1385.
    [54] HAUSENLOY D J, YELLON D M.The mitochondrial permeability transition pore:its fundamental role in mediating cell death during ischaemia and reperfusion.J Mol Cell Cardiol, 3,5(4):339-341.
    [55] ONG S B, SAMANGOUEI P, KALKHORAN S B, et al.The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury.J Mol Cell Cardiol, 5,8:23-34.
    [56] PAILLARD M, TUBBS E, THIEBAUT P A, et al.Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury.Circulation, 3,8(14):1555-1565.
    [57] 钟小兰, 班努·库肯, 景江新.过表达Bax抑制剂1通过抑制线粒体通透性转换孔开放及细胞凋亡减轻心肌缺血再灌注损伤.中国动脉硬化杂志, 1,9(3):222-231.
    [58] GOMEZ L, THIEBAUT P A, PAILLARD M, et al.The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury.Cell Death Differ, 6,3(2):313-322.
    [59] NIKOLAOU P E, BOENGLER K, EFENTAKIS P, et al.Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors.Cardiovasc Res, 9,5(7):1228-1243.
    [60] BERTERO E, MAACK C.Metabolic remodelling in heart failure.Nat Rev Cardiol, 8,5(8):457-470.
    [61] ONG S B, SUBRAYAN S, LIM S Y, et al.Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury.Circulation, 0,1(18):2012-2022.
    [62] HALL A R, BURKE N, DONGWORTH R K, et al.Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction.Cell Death Dis, 6,7(5):e2238.
    [63] GUTIéRREZ T, PARRA V, TRONCOSO R, et al.Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes.Cell Commun Signal, 4,2:68.
    [64] FERNANDEZ-SANZ C, RUIZ-MEANA M, MIRO-CASAS E, et al.Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium.Cell Death Dis, 4,5(12):e1573.
    [65] BROUND M J, WAMBOLT R, LUCIANI D S, et al.Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo.J Biol Chem, 3,8(26):18975-18986.
    [66] GOH K Y, QU J, HONG H, et al.Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes.Cardiovasc Res, 6,9(1):79-89.
    [67] PAPANICOLAOU K N, KHAIRALLAH R J, NGOH G A, et al.Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes.Mol Cell Biol, 1,1(6):1309-1328.
    [68] PIQUEREAU J, CAFFIN F, NOVOTOVA M, et al.Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload.Cardiovasc Res, 2,4(3):408-417.
    [69] GIVVIMANI S, MUNJAL C, TYAGI N, et al.Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure.PLoS One, 2,7(3):e32388.
    [70] SHIRAKABE A, ZHAI P, IKEDA Y, et al.Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure.Circulation, 6,3(13):1249-1263.
    [71] PENNANEN C, PARRA V, LPEZ-CRISOSTO C, et al.Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway.J Cell Sci, 4,7(Pt 12):2659-2671.
    [72] TUBBS E, CHANON S, ROBERT M, et al.Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans.Diabetes, 8,7(4):636-650.
    [73] THIVOLET C, VIAL G, CASSEL R, et al.Reduction of endoplasmic reticulum-mitochondria interactions in beta cells from patients with type 2 diabetes.PLoS One, 7,2(7):e0182027.
    [74] WU S, LU Q, DING Y, et al.Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo.Circulation, 9,9(16):1913-1936.
    [75] XIE Z, LAU K, EBY B, et al.Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice.Diabetes, 1,0(6):1770-1778.
    [76] GRIFFIN S J, LEAVER J K, IRVING G J.Impact of metformin on cardiovascular disease:a Meta-analysis of randomised trials among people with type 2 diabetes.Diabetologia, 7,0(9):1620-1629.
    [77] WEI X, WEI X, LU Z, et al.Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes.Metabolism, 0,5:154182.
    [78] HU Y, CHEN H, ZHANG L, et al.The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses.Autophagy, 1,7(5):1142-1156.
    [79] MOULIS M, GROUSSET E, FACCINI J, et al.The multifunctional sorting protein PACS-2 controls mitophagosome formation in human vascular smooth muscle cells through mitochondria-ER contact sites.Cells, 9,8(6):638.
    [80] WANG L, YU T, LEE H, et al.Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia.Cardiovasc Res, 5,6(2):272-283.
    [81] TORRES G, MORALES P E, GARCA-MIGUEL M, et al.Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.Biochem Pharmacol, 6,4:52-61.
    [82] LI D, LI X, GUAN Y, et al.Mitofusin-2-mediated tethering of mitochondria and endoplasmic reticulum promotes cell cycle arrest of vascular smooth muscle cells in G0/G1 phase.Acta Biochim BiophysSin(Shanghai), 5,7(6):441-450.
    [83] SALABEI J K, HILL B G.Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation.Redox Biol, 3,1(1):542-551.
    [84] MAIMAITIJIANG A, ZHUANG X, JIANG X, et al.Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells.Biochem Biophys Res Commun, 6,1(4):474-478.
    [85] ROGERS M A, MALDONADO N, HUTCHESON J D, et al.Dynamin-related protein 1 inhibition attenuates cardiovascular calcification in the presence of oxidative stress.Circ Res, 7,1(3):220-233.
    [86] COOPER H A, CICALESE S, PRESTON K J, et al.Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm.Cardiovasc Res, 1,7(3):971-982.
    引证文献
引用本文

董博文,王子同,于雪,李弘,杨力明.线粒体相关内质网膜:心血管疾病治疗的新靶点[J].中国动脉硬化杂志,2021,29(12):1013~1020.

复制
分享
文章指标
  • 点击次数:1047
  • 下载次数: 796
历史
  • 收稿日期:2021-07-05
  • 最后修改日期:2021-08-14
  • 在线发布日期: 2021-11-24