10/11易位家族蛋白2和羟甲基化修饰在动脉粥样硬化中的作用及其机制
作者:
作者单位:

(天然药物活性物质与功能国家重点实验室,新药作用机制研究与药效学评价北京重点实验室, 中国医学科学院 北京协和医学院药物研究所,北京市 100050)

作者简介:

陈杰梅,硕士研究生,研究方向为动脉粥样硬化相关疾病新药靶的发现和药物研发,E-mail为chenjiemei@imm.ac.cn。通信作者朱海波,博士,教授,博士研究生导师,研究方向为动脉粥样硬化相关疾病新药靶的发现和药物研发,E-mail为zhuhaibo@imm.ac.cn。

基金项目:

国家自然科学基金重大研究计划培育项目(91539126);国家“十三五重大新药创制”科技重大专项课题(2018ZX09711001-003-011);中国医学科学院医学与健康科技创新工程(CAMS-I2M-1-009)


The role and mechanism of ten-eleven translocation 2 and hydroxymethylation in atherosclerosis
Author:
  • CHEN Jiemei

    CHEN Jiemei

    State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
    在知网中查找
    在百度中查找
    在本站中查找
  • ZHU Haibo

    ZHU Haibo

    State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
    在知网中查找
    在百度中查找
    在本站中查找
Affiliation:

State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    动脉粥样硬化(As)是心脑血管疾病的重要病理基础。近年来,许多研究表明表观遗传机制在As的调控中也起着重要作用。被称为DNA第6种碱基的5-羟甲基胞嘧啶(5hmC)是染色体10/11易位家族蛋白(TET)介导DNA去甲基化产生的一种重要表观遗传修饰,参与多种生物学过程。最近研究表明,TET2及其介导的羟甲基化修饰不仅参与血管平滑肌细胞表型转化调控,还与内皮功能、炎症免疫反应等As的关键因素密切相关。在As斑块中也检测到TET2和5hmC明显缺失,缺失水平与损伤程度呈正相关。TET2和羟甲基化修饰可能在As的病理过程中发挥重要保护作用。本文将介绍TET2的结构及其功能、5hmC的研究概况及检测技术突破,重点阐述TET2及其介导的羟甲基化修饰在As中的作用及其机制,为As的有效防治提供新思路和新靶点。

    Abstract:

    Atherosclerosis (As) is an important pathological basis for cardio-cerebrovascular diseases. In recent years, many studies have shown that epigenetic mechanisms also play an important role in the regulation of As. 5-hydroxymethyl cytosine (5hmC), known as the sixth base of human DNA, is an important epigenetic modification derived from the demethylation process of DNA mediated by the ten-eleven translocation (TET) protein family, and has been known to involve in various biological processes. Recent studies have shown that TET2 and its mediated hydroxymethylation are not only involved in the regulation of phenotypic transformation of vascular smooth muscle cells, but also closely related to the key factors of As such as endothelial function and inflammatory immune response. It is also found that TET2 and 5hmC are markedly absent in As plaque, and the level of deletion is positively correlated with the degree of injury. TET2 and hydroxymethylation may play an important protective role in the pathological process of As. This review will introduce the structure and function of TET2, the research overview of 5hmC and the breakthrough in detection techniques. It will focus on the role and mechanism of TET2 and its mediated hydroxymethylation modification in As, and provide new ideas and targets for the effective prevention and treatment of As.

    参考文献
    [1] Bentzon JF, Otsuka F, Virmani R, et al.Mechanisms of plaque formation and rupture.Circ Res, 4,4(12):1852-1866.
    [2] Smith ZD, Meissner A.DNA methylation:Roles in mammalian development.Nat Rev Genet, 3,4(3):204-220.
    [3] Tahiliani M, Koh KP, Shen Y, et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by Mll partner Tet1.Science, 9,4(5929):930-935.
    [4] Ito S, Shen L, Dai Q, et al.Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science, 1,3(6047):1300-1303.
    [5] Lian CG, Xu Y, Ceol C, et al.Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.Cell, 2,0(6):1135-1146.
    [6] Gambichler T, Sand M, Skrygan M.Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma.Melanoma Res, 3,3(3):218-220.
    [7] Liu R, Jin Y, Tang WH, et al.Ten-eleven translocation-2 (Tet2) is a master regulator of smooth muscle cell plasticity.Circulation, 3,8(18):2047-2057.
    [8] Peng J, Yang Q, Li AF, et al.Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in apoe-/- mice.Oncotarget, 6,7(47):76423-76436.
    [9] Fuster JJ, MacLauchlan S, Zuriaga MA, et al.Clonal hematopoiesis associated with Tet2 deficiency accelerates atherosclerosis development in mice.Science, 7,5(6327):842-847.
    [10] Pastor WA, Aravind L, Rao A.Tetonic shift:Biological roles of Tet proteins in DNA demethylation and transcription.Nat Rev Mol Cell Biol, 3,4(6):341-356.
    [11] Hu L, Li Z, Cheng J, et al.Crystal structure of Tet2-DNA complex:Insight into Tet-mediated 5mC oxidation.Cell, 3,5(7):1545-1555.
    [12] Ko M, An J, Bandukwala HS, et al.Modulation of Tet2 expression and 5-methylcytosine oxidation by the cxxc domain protein Idax.Nature, 3,7(7447):122-126.
    [13] Ito S, D'Alessio AC, Taranova OV, et al.Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.Nature, 0,6(7310):1129-1133.
    [14] Shen Q, Zhang Q, Shi Y, et al.Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation.Nature, 8,4(7690):123-127.
    [15] Langemeijer SM, Kuiper RP, Berends M, et al.Acquired mutations in TET2 are common in myelodysplastic syndromes.Nat Genet, 9,1(7):838-842.
    [16] Lorsbach RB, Moore J, Mathew S, et al.TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23).Leukemia, 3,7(3):637-641.
    [17] Zhang Q, Zhao K, Shen Q, et al.Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6.Nature, 5,5(7569):389-393.
    [18] Ficz G, Branco MR, Seisenberger S, et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.Nature, 1,3(7347):398-402.
    [19] Pastor WA, Pape UJ, Huang Y, et al.Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.Nature, 1,3(7347):394-397.
    [20] Xu Y, Wu F, Tan L, et al.Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.Mol Cell, 1,2(4):451-464.
    [21] Kriaucionis S, Heintz N.The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain.Science, 9,4(5929):929-930.
    [22] Sun W, Zang L, Shu Q, et al.From development to diseases:The role of 5hmC in brain.Genomics, 4,4(5):347-351.
    [23] Mellén M, Ayata P, Dewell S, et al.Mecp2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system.Cell, 2,1(7):1417-1430.
    [24] Szulwach KE, Li X, Li Y, et al.5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.Nat Neurosci, 1,4(12):1607-1616.
    [25] Wang F, Yang Y, Lin X, et al.Genome-wide loss of 5-hmC is a novel epigenetic feature of huntington's disease.Hum Mol Genet, 3,2(18):3641-3653.
    [26] Koh KP, Yabuuchi A, Rao S, et al.Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineagespecification in mouse embryonic stem cells.Cell Stem Cell, 1,8(2):200-213.
    [27] Dawlaty MM, Breiling A, Le T, et al.Loss of Tet enzymes compromises proper differentiation of embryonic stem cells.Dev Cell, 4,9(1):102-111.
    [28] Greco CM, Kunderfranco P, Rubino M, et al.DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy.Nat Commun, 6,7:12418.
    [29] Booth MJ, Ost TW, Beraldi D, et al.Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine.Nat Protoc, 3,8(10):1841-1851.
    [30] Yu M, Hon GC, Szulwach KE, et al.Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine.Nat Protoc, 2,7(12):2159-2170.
    [31] Pastor WA, Huang Y, Henderson HR, et al.The Glib technique for genome-wide mapping of 5-hydroxymethylcytosine.Nat Protoc, 2,7(10):1909-1917.
    [32] Sun X, Chung TH, Tan D, et al.Practical guidelines and consideration of using Rrhp for 5hmC detection.Epigenomics, 6,8(2):225-235.
    [33] Song CX, Szulwach KE, Fu Y, et al.Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.Nat Biotechnol, 1,9(1):68-72.
    [34] Robertson AB, Dahl JA, Vagbo CB, et al.A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA.Nucleic Acids Res, 1,9(8):e55.
    [35] Li W, Zhang X, Lu X, et al.5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers.Cell Res, 7,7(10):1243-1257.
    [36] Song CX, Clark TA, Lu XY, et al.Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine.Nat Methods, 1,9(1):75-77.
    [37] Yang Q, Li X, Li R, et al.Low shear stress inhibited endothelial cell autophagy through Tet2 downregulation.Ann Biomed Eng, 6,4(7):2218-2227.
    [38] Peng J, Tang ZH, Ren Z, et al.Tet2 protects against oxLDL-induced HUVEC dysfunction by upregulating the CSE/H2S system.Front Pharmacol, 7,8:486.
    [39] Mani S, Li H, Untereiner A, et al.Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis.Circulation, 3,7(25):2523-2534.
    [40] Cheung SH, Kwok WK, To KF, et al.Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine gamma-lyase (CSE) gene.PLoS One, 4,9(11):e113038.
    [41] Wang XH, Wang F, You SJ, et al.Dysregulation of cystathionine gamma-lyase (CSE)/hydrogen sulfidepathway contributes to ox-LDL-induced inflammation in macrophage.Cell Signal, 3,5(11):2255-2262.
    [42] Zhaolin Z, Jiaojiao C, Peng W, et al.Ox-LDL induces vascular endothelial cell pyroptosis through miR-125a-5p/Tet2 pathway.J Cell Physiol, 9,4(5):7475-7491.
    [43] Chistiakov DA, Orekhov AN, Bobryshev YV.Vascular smooth muscle cell in atherosclerosis.Acta Physiol (Oxf), 5,4(1):33-50.
    [44] Chaabane C, Coen M, Bochaton-Piallat ML.Smooth muscle cell phenotypic switch:Implications for foam cell formation.Curr Opin Lipidol, 4,5(5):374-379.
    [45] Raines EW, Ross R.Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis.Br Heart J, 3,9(1 Suppl):S30-S37.
    [46] Gomez D, Owens GK.Smooth muscle cell phenotypic switching in atherosclerosis.Cardiovasc Res, 2,5(2):156-164.
    [47] Yamashita T, Kasahara K, Emoto T, et al.Intestinal immunity and Gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases.Circ J, 5,9(9):1882-1890.
    [48] Cull AH, Snetsinger B, Buckstein R, et al.Tet2 restrains inflammatory gene expression in macrophages.Exp Hematol, 7,5:56-70.
    [49] Li G, Peng J, Liu Y, et al.Oxidized low-density lipoprotein inhibits THP-1-derived macrophage autophagy via Tet2 down-regulation.Lipids, 5,0(2):177-183.
    [50] Qu K, Ma XF, Li GH, et al.Vitamin C down-regulate apo(a) expression via Tet2-dependent DNA demethylation in HepG2 cells.Int J Biol Macromol, 7,8:637-645.
    [51] Steinberg GR, Schertzer JD.AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation:Implications for diabetes and cardiovascular disease.Immunol Cell Biol, 4,2(4):340-345.
    [52] Ewart MA, Kennedy S.AMPK and vasculoprotection.Pharmacol Ther, 1,1(2):242-253.
    [53] Motoshima H, Goldstein BJ, Igata M, et al.AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer.J Physiol, 6,4(Pt 1):63-71.
    [54] Wu D, Hu D, Chen H, et al.Glucose-regulated phosphorylation of Tet2 by AMPK reveals a pathway linking diabetes to cancer.Nature, 8,9(7715):637-641.
    [55] Gong D, Zhang Q, Chen LY, et al.Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via Erk1/2 phosphorylation and Tet2 expression.Eur J Pharmacol, 9,3:177-189.
    引证文献
引用本文

陈杰梅,朱海波.10/11易位家族蛋白2和羟甲基化修饰在动脉粥样硬化中的作用及其机制[J].中国动脉硬化杂志,2019,27(6):528~535.

复制
分享
文章指标
  • 点击次数:1130
  • 下载次数: 869
历史
  • 收稿日期:2018-12-06
  • 最后修改日期:2019-01-27
  • 在线发布日期: 2019-06-04